See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/331021482

Theory of Structure (1)

Book • February 2019

CITATIONS	READS
0	71,351

1 author:
B Boshra Eltaly
Menoufia University
55 PUBLICATIONS 179 CITATIONS
SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Rropet Recycled concrete View projectBuilding Information Modeling View project

Theory of Structure (1)

By

Prof. Boshra El-Taly

Professor in Civil Engineering Department
Faculty of Engineering
Menoufia University

Acknowledgments

At the first, great thanks to $\mathcal{A L L \mathcal { A H } \mathcal { A L M I G H I N } \text { whose blessing on }}$ me cannot be counted.

At the second, i would like to thank with deep sense of gratitude and indebtedness to My Prof. Dr. Fakhry Ahmed Aboul-Ella professor of theory of structures, Civil Engineering Department, Faculty of Engineering, Menoufia University. He learned, encouraged and stood behind me during my learning years; under and postgraduate. Also i would like to thank My Prof. Dr. Kameโ Sayed Ahmed Kandil, professor of Steel Structures, Civil Engineering Department, Faculty of Engineering, Menoufia University. He is my supports in all my working life and my studies.

At the third, it is difficult for me to express my sincere thanks to $\mathcal{M} y$ professor Dr. Mohsen Mosa, Lecturer in Civil Engineering Department, Faculty of Engineering, Menoufia University. Additionally, it is a pleasure to express my deep thanks and appreciation to My Prof. Dr. Mostafa Morsi Ef-shami, professor of Theory of Structures, Civil Engineering Department, Faculty of Engineering, Menoufia University. They are my leaders.

Contents

Chapter (1): Introduction

1.1. Structures Definition. 1
1.2. Stages of Building the Structures 2
1.3. Structural Model 3
1.4. Loads 3
1.5. Components of the Structures 5
1.6. Supports 7
Chapter (2): Reactions
2.1. Introduction 10
2.2. Reactions 11
2.3. Equations of Static Equilibrium 13
2.4. Statically Determinate and Statically Indeterminate 14
2.5. Calculation the Reactions at Supports 23
2.6. Solved Examples 23
Chapter (3): Internal Forces in the Beams
3.1. Introduction 58
3.2. Type of the Internal Force 59
3.3. Sign Convention 62
3.4. Relationships between the Applied Forces, Shear Force and Bending
Moment 64
3.5. Solved Examples 65
Chapter (4): Internal Forces in the Frame Structures
4.1. Introduction 140
4.2. Statically Determinate System of the Frame 142
4.3. Solved Examples 145
Chapter (5): Truss Structures
5.1. Introduction 246
5.2. Determinacy of Trusses. 249
5.3. Method of Analysis. 251
5.4. Zero Members. 253
5.4. Solved Examples 254
Chapter (6): Influence Line
6.1. Introduction 327
6.2. Solve Example 328

Chapter (1) INTRODUCTION

1.1. Structures Definition

There are various types of structures in the world such as bridges, residential building, government building, parking building, educational building, religious building, industrial building, power stations, commercial electrical powers, and so on as shown in Fig. 1. 1. The structures constructed from many materials reinforced concrete, steel, stainless steel, aluminum and wood for example.

Fig. 1.1: Example of structures

1.2. Stages of Building the Structures

1. Architectural Layout

This stage is carried out by architecture engineers and in this stage; the structure is planed according the usage and the requirements of the building owners.
2. Structural Model and Behavior of structural Model

These two stages are called structural analysis. In the structural analysis processes stage, the loads on the structure and the structural model are indicated. Then the responses of the real structure under the excitation of expected loading and external environment during the service life of the structure is predict.

Fig. 1.2: Flow chart structural stages

3. Structural Design

In this stage, the type of used material is indicated, the amount of the used material are calculated.
4. Construction

In this stage, the building becomes real. This stage passes through several stages such as construction footing, column, beam so on.

1.3. Structural Model

You must understand that when we deal with any structures, we must study three objects; loads, structure and the support of the structures as shown in Fig. 1.3. The three objects must be modeled to indicate the behavior of the structure.

Fig. 1.3

1.4. Loads

Loads are the force that influnce on the structures. The loads on the structures are divided into:-

1. Dead loads: these loads are with a constant magnitude and remain in one position during the service life of the structures. They include the one weight of the structures and the loads that are permanently attached to the structures; floor covering.
2. Live loads: these loads very in their position and their magnitude may change. The live load included the wieght of the persons, furnitur, wind loads, earthquake loads, loads of trucks and cranes.

The two loads can be modeled (structural model) by concentrated load, uniform load on line, uniform load on area or body load as shown in Fig. 1.4.

Fig. 1.4.a: The concentrated load

(1)

Fig. 1.4.b: The uniform load

1.5. Components of the Structures

The structure composes of some components as illustrated in Fig. 1.5. Each component subjects to loads and it transfers these loads to the next components (supports).

1. Slab: the first component is the slab. The slab subjected to its own weight, the floor covering and the live load and it supports on the beam. It was modeled by area as shown in Fig. 1.6.
2. Beam: The beams subject to their own weight and the load from slab. The beam supports on columns and it was modeled by line. This line has start and end points. These points were called nodes or joints as presented in Fig. 1.6.
3. Columns: The column is the support of the beam and it modeled as the beam.
4. Footing: The footing transfers load from the structure through the column to the soil. It was simulated by area as slab.

Fig. 5.1: Structure components

Ass. Pr. Eltaly, B.

Fig. 1.6: Structural model of beam and slab

1.6. Supports

There are four types of supports. These supports are determined according to the type of the analysis and construction.

1. Movable or Roller Support

This support is constructed to permit a movement parallel to the supporting surface. It transfers only a single reaction perpendicular to the support surface. The roller support is presented in Fig. 1.7.

Fig. 1.7: Roller support

2. Hinged or Pin Support

This support prevents movement in a horizental and vertical directionand on the other hand it perimits rotation about the support. Hinged support transfers three reactions perpendicular to the support surface. The connection between the slab of the bridges and the retaining walls may be constructed to make the retaining wall is a hinged support to the bridge slab. Also you can see the hinged support in the connection between the beam and column. The column is a hinged support to the column because the reinforcements of the column do not insert the beam. The pin support is presented in Fig. 1.8.

Fig. 1.8: Details of hinged support

3. Fixed Support

This support does not allow the movements in all directions; x, y and z and rotation about x, y and z direction. This support transfers three reactions perpendicular to the support surface and three bending moments. The reinforcements of the concrete column were inserted in the footing so that the footing is fixed support to the column. This support is indicated in Fig. 1.9.

a) Real

b) Model

Fig. 1.9: Details of fixed support

4. Link support

This support like the beam with hinged support at one end and intermediate hinge at the second end.

Chapter (2)

REACTIONS

2.1. Introduction

A structure must be designed to resist all the forces that act on it. If the structure cannot resist these forces, it may collapse as shown in Fig. 2.1. So that you must calculate the external forces acted on the structures and indicate the behavior of the structures under these loads (internal forces).

Fig. 2.1: The structure collapse

2.2. Reactions

The external forces that act on the structures included the loads reactions of the supports. Loads or applied forces referred to the load that have the tendency to move the structure (dead load, live load and so on). The reactions are forces exerted by supports of the structure and they are those forces applied to the structure to counteract the action of the applied force (they prevent its motion and keep it in equilibrium). The reactions are usually among the unknowns to be determined by analysis. To identify any force completely, there are three unknowns to that must be determined; the force magnitude, direction and the line of action of the force.

If a support prevents translation of body in a given direction, a force is developed on the body in that direction. This means that a support that prevents translation of the structure in a particular direction creates a reaction force on the structure in that direction. Also the support prevents rotation of the structure about a particular axis creates a reaction couple on the structure about that axis. All the types of the supports are presented in table 2.1.

From table 2.1, it can be seen that for roller support, the magnitude of reaction force that acts perpendicular to the supporting surface is unknown and it may be directed either away from or into the structure. Also for the hinged support the reactions consist of two components Y and X and the magnitude of the two components are unknown. Additionally the fixed support prevents the translation in x, y and one rotation about z direction so that it has three unknown components; X, Y and M . For the link support, the reaction force R
is unknown and this force acts in the direction of the link and may be directed either into or away from the structure.

Table 2.1: Type of supports

Support type	Model	Movements	Reactions
Roller support		$\begin{array}{ll} \text { xoct } & y=0 \quad \theta=? \\ y^{\prime} x=0 & y=? \end{array} \theta=?$	
Hinged support	माजाm	$x=0 \quad y=0 \quad \theta=?$	
Fixed support		$x=0 \quad y=0 \quad \theta=0$	
Link support		All the movements are allowed except the movement in the direction of the link member.	

2.3. Equations of static Equilibrium

A structure is considered to be in equilibrium if, initially at rest. It remains at rest when subjected to a system of forces couples. If a structure is in equilibrium, then all its members and parts are also in equilibrium. For a plane structure laying in the xy plane and subjected to a coplanar system of forces and couples, the necessary and sufficient conditions for equilibrium are:

1. The algebraic sum of the components of all forces parallel to the x axis is zero as presented in Eq.1.
2. The algebraic sum of the components of all the forces parallel to the y axis is zero as presented in Eq. 2.
3. 3. The algebraic sum of the moments of all forces about any point in the plane of forces is zero (see Eq. 3).

$$
\begin{align*}
& \sum F_{x}=0 \tag{1}\\
& \sum F_{y}=0 \tag{2}\\
& \sum M=0 \tag{3}
\end{align*}
$$

The three equations are called the equation of the equilibrium of structures in the plane direction. These equations are used to determine the unknown reactions.

2.4. Statically Determinate and Statically Indeterminate

From the previous sections, we can be concluded that there are two types of external forces; the applied forces and reactions of the supports. The applied forces are known; magnitude, direction and line of actions of the force. On the other hand for the reactions only the point of force and perhaps the directions are unknown as shown in table. 2.1. Also there are three equations of equilibrium and they are used to determine the unknown reactions. The total numbers of unknowns that can be determined by the equations of equilibrium are three. The determination of more three unknowns requires additional equations or methods to be used.

The additional equations can be obtained from the additional conditions. These equations are considered if the structures are constructed with intermediate hinge and with link element. The intermediate hinge is constructed to make the internal moments at it equal zero. Fig. 2.2 showed intermediate hinge in the beam of steel bridge. The beam is modeled by straight line and the intermediate hinge is modeled by circle in its position. The intermediate hinge gives one additional equation; the moment at it equal zero.

Link element is a member of structure (component). It likes beam with two intermediate hinges at its ends; start and the end. It does not carry external loads perpendicular to the directions of the link or bending moments. Also the link has the ability of carrying the force parallel to the direction of the link.

Fig. 2.2: The intermediate hinge
The total number of unknown and the number of the available equations (equilibrium equations and the additional equations) were used to determine the type of the structures. It is customary to divide structures into statically determinate and statically indeterminate.

1. Statically determinate structure

It is a system for which all reactions of supports can be determined by means of available equations (equations of equilibrium and the additional equations) and the internal forces also can be found by method of sections. The internal forces are the forces created in structures under the external forces and they will be explained in the next chapter. This means that the unknown in statically determinate structure is same as the available equations.

Example (1)

Fig. 2. 3. a. represents a simple beam with one span; L length. This beam is considered to be subjected to two loads P and this beam support on two columns at a\&b. The two columns are simulated by two supports; one is hinged and the other is roller support. Find the type of the structure: statically determinate structure or statically indeterminate structure.

Fig. 2.3.a

Solution

- The numbers of unknown at the point (a) are two reactions $X_{a} \& Y_{a}$
- The number of unknowns at the point (b) is one reaction Y_{b}
$>$ So that the total numbers of the unknown are three unknowns.
\checkmark The numbers of available equations are three equations: the equilibrium equations. $\sum F_{x}=0 \quad \sum F_{y}=0 \quad \sum M=0$

The number of unknowns $=$ the numbers of available equations so that the structure is statically determinate.

Example (2)

Fig. 2. 4. a. represents a continuous beam. This beam is considered to be supported on three columns at $\mathrm{a}, \mathrm{b} \& \mathrm{c}$. The three columns are simulated by three supports; one is hinged and the other is roller support. Also the beam has an intermediate hinge at joint\#d. Find the type of the structure: statically determinate structure or statically indeterminate structure.

Fig. 2.4.a

Solution

- The numbers of unknown at the point (a) are two reactions $X_{a} \& Y_{a}$
- The number of unknowns at the point (b) is one reaction Y_{b}
- The number of unknowns at the point (c) is one reaction Y_{c}
$>$ So that the total numbers of the unknown are four unknowns.
\checkmark The numbers of available equations are four equations: the equilibrium equations.

$$
\sum F_{x}=0 \quad \sum F_{y}=0 \quad \sum M=0
$$

$$
\text { and additional equation } \sum M_{d}=0
$$

The number of unknowns $=$ The numbers of available equations so that the structure is statically determinate.

Fig. 2.4.b

Example (3)

A frame structure is presented in Fig. 2. 5. a. The frame is different than beam in construction. In the beam, the reinforcements of the columns do not insert in the beam. On the other hand the reinforcements of the columns in the frame structure must be inserted in the beams. The connection between the beam and column is considered hinged in the beam structure but in the frame structure the connection is not considered as hinged support. Find the type of the structure: statically determinate structure or statically indeterminate structure.

Fig. 2.5.a

Solution

- The numbers of unknown at the point (a) are two reactions $X_{a} \& Y_{a}$
- The number of unknowns at the point (b) is one reaction Y_{b}
$>$ So that the total numbers of the unknown are three unknowns.
\checkmark The numbers of available equations are four equations: the equilibrium equations. $\sum F_{x}=0 \quad \sum F_{y}=0 \quad \sum M=0$

The number of unknowns $=$ The numbers of available equations so that the structure is statically determinate.

Fig. 2.5.b

Example (4)

A frame structure is presented in Fig. 2.6. Find the type of the structure: statically determinate structure or statically indeterminate structure.

Fig. 2.6
Solution

- The numbers of unknown at the point (a) are two reactions $X_{a} \& Y_{a}$
- The number of unknowns at the point (b) is one reaction $X_{b} \& Y_{b}$
$>$ So that the total numbers of the unknown are three unknowns.
\checkmark The numbers of available equations are four equations: the equilibrium equations. $\sum F_{x}=0 \quad \sum F_{y}=0 \quad \sum M=$

0 and additional equation $\sum M_{d}=0$
The number of unknowns $=$ The numbers of available equations so that the structure is statically determinate.

Example (5)

A frame structure is presented in Fig. 2.7. Find the type of the structure: statically determinate structure or statically indeterminate structure.

Fig. 2.7

Solution

- The numbers of unknown at the point (a) are two reactions $X_{a} \& Y_{a}$
- The number of unknowns at the point (b) is one reaction $X_{b} \& Y_{b}$
$>$ So that the total numbers of the unknown are five unknowns.
\checkmark The numbers of available equations are four equations: the equilibrium equations. $\sum F_{x}=0 \quad \sum F_{y}=0 \quad \sum M=$

0 and two additional equations
The internal moment and shear force in the link element $=0$
The number of unknowns (5) = The numbers of available equations (5) so that the structure is statically determinate.
2. Statically indeterminate structure.

It a system of structures in which the reactions of supports can not be determined by means of available equations (equations of equilibrium and the additional equations). The indeterminacy of the structure may be either external, internal, or both. Table 2.2 illustrates some type of statically determinate structures.

Table 2.2: Classification of the structures

Structure		No. Unknown	No Equation	Classification
		4	3	Statically indeterminate (1)
		5	4	Statically indeterminate (1)
$\{$		6	4	Statically indeterminate (2)

2.5. Calculation the Reactions at Supports

To determine the reactions at the support, the available equations are used. The following examples will serve to illustrate the procedure of calculation of the reactions by applying available equations.

2.6. Solved Examples

Example (6)

For simple beam (a-b) presented in Fig. 2.8, calculate the reactions at the two supports under the applied load.

Fig. 2.8.a
Solution

Fig. 2.8.b
$>$ Finding the reactions
a) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=0$
b) $\sum M_{a}=0 \ggg \ggg \gg 10 x 3-Y_{b} x 6=0$

$$
\therefore Y_{b}=\frac{30}{6}=5 t \uparrow
$$

c) $\sum M_{b}=0 \ggg \ggg \gg 10 x 3-Y_{a} x 6=0$

$$
\therefore Y_{a}=\frac{30}{6}=5 t \uparrow
$$

d) Check $\sum \mathrm{F}_{\mathrm{y}}=10-5-5=0 \ggg \ggg \gg$ ok

Example (7)

For simple beam (a-b) presented in Fig. 2.9, calculate the reactions at the two supports under the applied load.

Fig. 2.9.a
Solution

Fig. 2.9.b
$>$ Finding the reactions
a) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=0$
b) $\sum M_{a}=0 \ggg \ggg \gg 10 x 2-Y_{b} x 6=0$

$$
\therefore Y_{b}=\frac{20}{6}=3.33 t \uparrow
$$

c) $\sum M_{b}=0 \ggg \ggg \ggg 10 x 4-Y_{a} x 6=0$

$$
\therefore Y_{a}=\frac{40}{6}=6.67 t \uparrow
$$

d) Check $\sum \mathrm{F}_{\mathrm{y}}=10-6.67-3.33=0 \ggg \ggg \gg$ ok

Example (8)

For simple beam (a-b) presented in Fig. 2.10, calculate the reactions at the two supports under the applied load.

Fig. 2.10.a
Solution

Fig. 2.10.b
$>$ Finding the reactions
a) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=0$
b) $\sum M_{a}=0 \ggg \ggg \gg 12 x 2.5+10 x 5.5-Y_{b} x 8.5=0$

$$
\therefore Y_{b}=\frac{85}{8.5}=10 t \uparrow
$$

c) $\sum M_{b}=0 \ggg \ggg \gg 10 x 3+12 x 6-Y_{a} x 8.5=0$

$$
\therefore Y_{a}=\frac{102}{8.5}=12 t \uparrow
$$

d) Check $\sum \mathrm{F}_{\mathrm{y}}=10+12-10-12=0 \ggg \ggg \ggg$ ok Example (9)

For simple beam (a-b) presented in Fig. 2.11, calculate the reactions at the two supports under the applied load.

Fig. 2.11.a
Solution

Fig. 2.11.b
$>$ Finding the reactions
a) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=4 \mathrm{t} \rightarrow$
b) $\sum M_{a}=0 \ggg \ggg \gg 15 x 2.5+11 x 5.5+8 x 10-Y_{b} x 8.5=0$

$$
\therefore Y_{b}=\frac{178}{8.5}=20.941 t \uparrow
$$

c) $\sum M_{b}=0 \ggg \ggg \gg 15 x 6+11 x 3-8 x 1.5-Y_{a} x 8.5=0$

$$
\therefore Y_{a}=\frac{111}{8.5}=13.059 t \uparrow
$$

d) Check $\sum \mathrm{F}_{\mathrm{y}}=15+11+8-20.941-13.059=0 \ggg \ggg \gg$ ok

Example (10)

For simple beam (a-b) presented in Fig. 2.12, calculate the reactions at the two supports under the applied load.

Fig. 2.12.a
Solution

Fig. 2.12.b
$>$ Finding the reactions
a) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=4 \mathrm{t} \rightarrow$
b) $\sum M_{a}=0 \ggg \ggg \gg 15 x 2.5+11 x 5.5+8 x 8.5-4 x 1.5-Y_{b} x 8.5=0$

$$
\therefore Y_{b}=\frac{160}{8.5}=18.824 t \uparrow
$$

c) $\sum M_{b}=0 \ggg \ggg \ggg 15 x 6+11 x 3+4 x 1.5-Y_{a} x 8.5=0$

$$
\therefore Y_{a}=\frac{129}{8.5}=15.176 t \uparrow
$$

d) Check $\sum \mathrm{F}_{\mathrm{y}}=15+11+8-18.824-15.176=0 \ggg \ggg \gg$ ok

Example (11)

For simple beam (a-b) presented in Fig. 2.13, calculate the reactions at the two supports under the applied load.

Fig. 2.13.a
Solution

Fig. 2.13.b
\rightarrow Finding the reactions
a) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=0$
b) $\sum M_{a}=0 \ggg \ggg \ggg 30-Y_{b} x 6=0$

$$
\therefore Y_{b}=\frac{30}{6}=5 t \uparrow
$$

c) $\sum M_{b}=0 \ggg \ggg \ggg-30-Y_{a} x 6=0$

$$
\therefore Y_{a}=\frac{-30}{6}=5 t \downarrow
$$

d) Check $\sum \mathrm{F}_{\mathrm{y}}=5-5=0 \ggg \ggg \gg$ ok

Example (12)

For simple beam (a-b) presented in Fig. 2.14, calculate the reactions at the two supports under the applied load.

Fig. 2.14.a
Solution
$>$ At the first, the inclined load is analyzed into two components; the vertical component $\mathrm{P}_{\mathrm{v}}=\mathrm{P} \sin \alpha=15 \mathrm{t}$ and the horizontal components $\mathrm{P}_{\mathrm{h}}=$ $P \cos \alpha=15$ t as indicated in Fig. 2.14.a.

Fig. 2.14.b
$>$ Finding the reactions
a) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=15 \mathrm{t} \rightarrow$
b) $\sum M_{a}=0 \ggg \ggg \gg 15 x 3.5-Y_{b} x 5.5=0$

$$
\therefore Y_{b}=\frac{52.5}{5.5}=9.545 t \uparrow
$$

c) $\sum M_{b}=0 \ggg \ggg \gg 15 x 2-Y_{a} x 5.5=0$

$$
\therefore Y_{a}=\frac{30}{5.5}=5.455 t \downarrow
$$

d) Check $\sum \mathrm{F}_{\mathrm{y}}=15-5.455-9.545=0 \ggg \ggg \gg$ ok

Example (13)

For simple beam (a-b) presented in Fig. 2.15, calculate the reactions at the two supports under the applied load.

Fig. 2.15.a
Solution
$>$ At the first, the uniform load is concentrated according to its type as indicated in table 2.3(see Fig. 2.15.b).
$>$ At the second, the reaction will be calculated

Fig. 2.15.b
a) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=0$
b) $\sum M_{a}=0 \ggg \ggg \ggg 32 x 4-Y_{b} x 8=0$

$$
\therefore Y_{b}=\frac{128}{8}=16 t \uparrow
$$

c) $\sum M_{b}=0 \ggg \ggg \ggg 32 x 4-Y_{a} x 8=0$

$$
\therefore Y_{a}=\frac{128}{8}=16 t \uparrow
$$

d) Check $\sum \mathrm{F}_{\mathrm{y}}=32-16-16=0 \ggg \ggg \ggg$ ok

Table 2.3: Type of uniform load

LT/me	
	$1-\mathrm{L} \longrightarrow \mathrm{~L} \longrightarrow$

Example (14)

For cantilever beam presented in Fig. 2.16, calculate the reactions at the fixed support under the applied load.

Fig. 2.16.a
Solution

Fig. 2.16.b
a) The fixed support has three reactions X_{a}, Y_{a} and M_{a}
b) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=3 \mathrm{t} \rightarrow$
c) $\sum M_{a}=0 \ggg \ggg \ggg 25+10 x 6-M_{a}=0$
$\therefore M_{a}=85 m t$
d) $\Sigma F_{y}=$
$0 \ggg \ggg \gg 10-Y_{a}=0$
$\therefore Y_{a}=10 t \uparrow$

For cantilever beam presented in Fig. 2.17, calculate the reactions at the fixed support under the applied load.

Fig. 2.17.a
Solution

Fig. 2.17.b
$>$ The fixed support has three reactions X_{a}, Y_{a} and M_{a}
a) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=0$
b) $\sum M_{a}=$
$0 \ggg \ggg \ggg 2 x 2+5 x 7-M_{a}=0$
$\therefore M_{a}=39 \mathrm{mt}$
c) $\sum F_{y}=0 \ggg \ggg \ggg>Y_{a}=0 \quad \therefore Y_{a}=7 t \uparrow$

Example (16)

For frame presented in Fig. 2.18, calculate the reactions at the two supports under the applied load.

Fig. 2.18.a
Solution

$$
\begin{gathered}
\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=5 \mathrm{t} \leftarrow \\
\sum M_{a}=0 \ggg \ggg \gg 18 x 4.5+3 x 9.75+5 x 8-10 \times 1-Y_{b} x 9=0 \\
\\
\quad \therefore Y_{b}=15.58 t \uparrow \\
\sum M_{b}=0 \ggg \ggg \gg 18 x 4.5+3 x 0.75+5 x 6-10 \times 10+5 \times 2+Y_{a} \times 9=0 \\
\therefore Y_{a}=15.42 t \uparrow
\end{gathered}
$$

Check $\sum \mathrm{F}_{\mathrm{y}}=18+3+10-15.58-15.42=0 \ggg \ggg \gg$ ok

Fig. 2.18.b

Example (17)

For frame presented in Fig. 2.19, calculate the reactions at the two supports under the applied load.

Fig. 2.19.a
Solution
$\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=2 \mathrm{t} \leftarrow$
$\sum M_{a}=0 \gg 1 x 1+8 x 4+4 x 7-2 x 6-2 x 2-Y_{b} x 8=0$

$$
\therefore Y_{b}=5.625 t \uparrow
$$

$\sum M_{b}=0 \ggg \ggg \ggg>8 x 4+2 x 10+4 x 1+1 x 7+2 x 6-Y_{a} x 8=0$

$$
\therefore Y_{a}=9.375 t \uparrow
$$

Check $\sum \mathrm{F}_{\mathrm{y}}=8+2+4+1-9.375-5.625=0 \ggg \ggg \ggg$ ok

Fig. 2.19.b
Example (18)
For beam presented in Fig. 2.20, calculate the reactions at the supports under the applied load.

Fig. 2.20.a
Solution

Fig. 2.20.b
$>$ For part ab
$\sum M_{b}=0.0 \quad 6 x 2+6 x 1-4.8 x 3-2 x 8+Y_{a} x 6=0 \quad Y_{a}=2.07 \uparrow$
$\sum M_{a}=0.0 \quad 6 x 8+6 x 7+4.8 x 3-2 x 2+Y_{b} x 6=0 \quad Y_{b}=16.73 \uparrow$
Check $\sum F_{y}=2+4.8+6+6-2.07-16.73=0 \ldots$ Ok
$\sum F_{x}=0 \quad X_{b}=3.6 t \leftarrow$
Check For all structure
$\sum F_{y}=2+4.8+6+12-2.07-16.73-6=0 \ldots$ Ok

Example (19)

For beam presented in Fig. 2.21, calculate the reactions at the supports under the applied load.

Fig. 2.21.a
Solution
$>$ For part ab
$\sum M_{b}=0.0 \quad 5+4 x 1+8.53 x 2-4 x 10+Y_{a} x 8=0 \quad Y_{a}=1.74 \uparrow$
$\sum M_{a}=0.0 \quad 5-4 x 2+4 x 9+8.53 x 10-Y_{b} x 8=0 \quad Y_{b}=14.79 \uparrow$
Check $\sum F_{y}=4+4+8.53-1.74-14.79=0 \ldots$ Ok
$\sum F_{x}=0 \quad X_{b}=7.07 t \rightarrow$
Check For all structure
$\sum F_{y}=4+4+7.07+5-14.79-1.74-3.54=0 \ldots$ Ok

Fig. 2.21.b

Example (20)
For beam presented in Fig. 2.22, calculate the reactions at the two supports under the applied load.

Fig. 2.22
$\sum F_{x}=0 \quad X_{a}=0$
$\sum M_{b}=0.0 \quad 4 x 1+16-12 x 5-4.5 x 10+Y_{a} x 8=0 \quad Y_{a}=10.625 \uparrow$
$\sum M_{a}=0.0 \quad 12 x 3+16+4 x 9-4.5 x 2-Y_{b} x 8=0 \quad Y_{b}=9.875 \uparrow$
Check $\sum F_{y}=4.5+12+4-10.625-9.875=0 \ldots$ Ok

Example (21)

For beam presented in Fig. 2.23, calculate the reactions at the two supports under the applied load.

Fig. 2.23

Example (22)
For frame presented in Fig. 2.24, calculate the reactions at the two supports under the applied load.

Fig. 2.24.a
$\sum M_{b}=0.0-7.5 x 2.5-3 x 8+1.5 x 1+Y_{a} x 7=0 \quad Y_{a}=5.89 t \uparrow$
$\sum M_{a}=0.0 \quad 7.5 x 4.5+1.5 x 8-3 x 1-Y_{b} x 7=0 \quad Y_{b}=6.11 t \uparrow$
Check $\sum F_{y}=3+7.5+1.5-5.89-6.11=0 \ldots$ Ok
$\sum M_{c}=0$ for left part

$$
-1\left(3 x 3+X_{a} x 5.5+5.89 x 2=0.0 \quad X_{a}=0.505 t \rightarrow\right.
$$

$\sum M_{c}=0$ for right part

$$
7.5 x 2.5+1.5 x 6-6.11 x 5+X_{b} x 5.5=0.0 \quad X_{b}=0.505 t \leftarrow
$$

Check... $\quad \sum \mathrm{F}_{\mathrm{x}}=0.0$

Fig. 2.24.b
Example (23)
For frame presented in Fig. 2.25, calculate the reactions at the two supports under the applied load.

Solution

$\sum^{M_{b}=0.0-20 x 5-7.07 x 14+7.07 x 5-20 \times 20+Y_{a} \times 18=0}$
$Y_{a}=31.31 t \uparrow$
$\Sigma^{M_{a}=0.0} \begin{gathered}7.07 x 4+7.07 x 5+20 x 13-20 x 2-Y_{b} x 18=0 \\ Y_{b}=15.76 t \uparrow\end{gathered}$
Check $\sum F_{y}=20+7.07+20-15.76-31.31=0 \ldots$ Ok
$\sum M_{c}=0$ for left part

$$
-7.07 x 4-20 x 10+31.31 x 8-X_{a} x 5=0.0 \quad X_{a}=4.44 t \rightarrow
$$

$\sum M_{c}=0$ for right part

$$
\begin{aligned}
20 x 5-15.76 x 10+X_{b} x 5 & =0.0 \quad X_{b}=11.51 t \leftarrow \\
\text { Check } \sum F_{x}=4.44+7.07-11.51 & =0 \ldots \text { Ok }
\end{aligned}
$$

Fig. 2.25

Example (24)

For frame presented in Fig. 2.26, calculate the reactions at the two supports under the applied load.

Fig. 2.26.a

Fig. 2.26.b
$\sum M_{c}=0$ for left part

$$
-3 x 3+X_{a} x 6=0.0 \quad X_{a}=1.5 t \leftarrow
$$

$\sum M_{d}=0$ for left part

$$
-(9 x 3+3 x 6+3 x 3-1.5 x 6)+y_{a} x 6=0.0 \quad y_{a}=8.50 t \uparrow
$$

$$
\sum F_{x}=0 \quad X_{b}=2.50 \leftarrow
$$

$$
\sum M_{b}=\sum M_{b} \text { Fixed support }
$$

$$
-(5 x 1+9 x 5+3 x 10+4 x 6-6 x 3-8.5 x 8)=M_{b} \text { Fixed } \quad M_{b}=18 m t
$$

$\sum M_{d}=0.0 \quad$ For right part

$$
5 x 1-3 x 3+0.5 x 6+18-y_{b} x 2=0.0 \quad y_{b}=8.50 t \uparrow
$$

Check $\sum F_{y}=5+3+12-8.5-8.5=0 \ldots$ Ok
Check $\sum \mathrm{F}_{\mathrm{c}}=0.0$ for right part

$$
=-3 x 2+9 x 3+5 x 7-3 x 3-8.5 x 8+0.5 x 6+18=0.0 \quad O k
$$

Example (25)

For frame presented in Fig. 2.27, calculate the reactions at the two supports under the applied load.

Fig. 2.27

Solution

$\sum M_{b}=0.0 \quad 4 \times 2+2 x 4+2 x 6-X_{a} x 3=0 \quad Y_{a}=9.33 t \leftarrow$
$\sum M_{a}=0.0 \quad 4 x 2+2 x 4+2 x 6-X_{b} x 3=0 \quad X_{b}=9.33 t \rightarrow$ Check $\sum F_{x}=0 \ldots$ Ok

$$
\frac{9.33}{Y_{b}}=\frac{4}{3} \quad Y_{b}=6.9997 \cong 7 t \uparrow
$$

$$
F_{y}=0.0 \quad 4+2+2-7-Y_{a}=0.0 \quad Y_{a}=1.0 t \uparrow
$$

Example (26)

For frame presented in Fig. 2.28, calculate the reactions at the two supports under the applied load.

Fig. 2. 28
Solution
$\sum M_{b}=0.0 \quad 4 x 4.5-Y_{a} x 3=0 \quad Y_{a}=6 t \downarrow$
$\sum M_{a}=0.0 \quad 4 x 7.5-Y_{b} x 3=0 \quad Y_{b}=10 t \uparrow$
Check $\sum F_{y}=4+6-10=0 \ldots$ Ok

$$
\frac{\mathrm{X}_{\mathrm{a}}}{\mathrm{Y}_{\mathrm{a}}}=\frac{3}{4} \quad X_{a}=4.5 t \leftarrow
$$

$$
\sum F_{x}=0.0 \quad X_{b}=4.5 t \rightarrow
$$

$$
\sum F_{y}=0 \quad F_{y}=6 \mathrm{t} \uparrow \quad \frac{\mathrm{~F}_{\mathrm{x}}}{\mathrm{~F}_{\mathrm{y}}}=\frac{3}{2} \quad F_{x}=9 \mathrm{t} \leftarrow
$$

Example (27)
For frame presented in Fig. 2.29, calculate the reactions at the two supports under the applied load.

Fig. 2.29

$$
\begin{align*}
& \quad \sum M_{f}=0 \text { for left part } \\
& \quad 6 x 1.5+6 x 1.5-y_{a} x 3+4 x 1-4 x 1+15 x 2=0.0 \quad y_{a}=13.33 t \uparrow \\
& \qquad y_{b}=3.33 t \downarrow \\
& \sum F_{y}=0 \\
& \sum M_{f}=0 \text { for right part } \tag{1}\\
& X_{d} x 1+X_{c} x 2=0.0 \quad \ggg X_{d}=-2 X_{c} \\
& \sum F_{x}=0 \quad \ggg \ggg X_{d}-X_{c}-5=0 \tag{2}\\
& \text { By solving Eq. } 1 \text { and Eq. } 2 \quad \text { (1) } \\
& \qquad X_{c}=5 t \leftarrow \quad X_{d}=10 t \rightarrow
\end{align*}
$$

Fig. 2. 29.6

Example (28)

For frame presented in Fig. 2.29, calculate the reactions at the two supports under the applied load.

Fig. 2.29
Solution

Fig. 2.29.b
$F_{x}=0.0 \quad X_{b}=1.0 t \leftarrow$
$\sum M_{c}=0.0 \quad$ For left part

$$
-12 x 1.5-3 x 3+Y_{a} x 3=0.0 \quad Y_{a}=9.0 t \uparrow
$$

$$
\sum F_{y}=0.0 \quad Y_{b}=23 t \uparrow
$$

$M_{a}=0.0$ for all structure

$$
\begin{gathered}
12 \times 1.5+12 x 4.5+8 x 7+3 \times 4.5+3 \times 4.5+3 \times 1.5-5 \times 1.5-23 x 8+M_{b} \\
=0.0 \quad M_{b}=45.5 m t
\end{gathered}
$$

Check $\quad \sum M_{c}=0.0$ for right part \qquad

$$
\begin{aligned}
& \sum M_{d}=0.0 F_{x}=43.33 t \rightarrow \\
& \frac{\mathrm{~F}_{\mathrm{x}}}{\mathrm{~F}_{\mathrm{y}}}=\frac{2}{1.5} \quad F_{y}=32.5 t \quad F=72.22 t \operatorname{Comp}
\end{aligned}
$$

Example (29)

For frame presented in Fig. 2.30, calculate the reactions at the two supports under the applied load.

Fig. 2.30.a

Fig. 2.30.b

$$
\begin{array}{lcc}
\sum F_{x}=0.0 & X_{a}=4.0 t \leftarrow \\
\sum \mathrm{M}_{\mathrm{a}}=0.0 & 6 \mathrm{x} 2+6 \mathrm{x} 6+2 \mathrm{x} 10 \mid+4 \mathrm{x} 2-\mathrm{Y}_{\mathrm{b}} \mathrm{x} 8=0 & \mathrm{Y}_{\mathrm{b}}=9.5 \mathrm{t} \uparrow \\
\sum M_{b}=0.0 & 6 x 2+6 x 6-2 x 2-4 \times 2-Y_{a} x 8=0.0 & Y_{a}=4.5 t \uparrow
\end{array}
$$

$\sum M_{c}=0 \quad 6 x 2+2 x 6-9.5 x 4+F x 4=0.0 \quad F=3.5 t \leftarrow($ tension $)$
Example (30)
For beam presented in Fig. 2.31, calculate the reactions at the supports under the applied load.

Fig. 2.31.a

Fig. 2.31.b

$$
\begin{aligned}
& \sum M_{o}=0.0 \quad 3 x 1+3 x 3-3 x 1-4.5 x 3.5-Y_{a} x 4+X_{a} x 5=0.0 \\
& -6.75-4 x Y_{a}+X_{a} x 5=0.0 \\
& \text { Eq. } 1 \\
& \frac{X_{a}}{Y_{a}}=\frac{2}{3} \\
& X_{a}=\frac{2}{3} Y_{a} \\
& \text { Eq. } 2 \\
& \text { By solving Eq. } 1 \& 2 \quad Y_{a}=10.125 t \uparrow \quad X_{a}=6.75 t \leftarrow \\
& \sum M_{c}=0.0 \quad-6.75+5 \mathrm{x}_{\mathrm{c}}-\mathrm{X}_{\mathrm{c}} 6=0.0 \quad \mathrm{Y}_{\mathrm{c}}=\mathrm{X}_{\mathrm{c}} \\
& -6.75+(5-6) Y_{c}=0.0 \\
& \mathrm{Y}_{\mathrm{c}}=6.75 \mathrm{t} \uparrow \\
& X_{c}=6.75 t \rightarrow \\
& \sum M_{a}=0.0-(3 x 1+3 x 3+3 x 5+4.5 x 7.5)+4 Y_{b}-6.75 x 9= \\
& 0.0 \\
& Y_{b}=30.375 t \downarrow \\
& \text { Check } \\
& \sum F_{y}=0.0 \quad O k
\end{aligned}
$$

Chapter (3)

INTERNAL FORCES IN THE BEAMS

3.1. Introduction

The internal forces are the forces that are created in the structures during transferring loads to the supports. Also these terms indicate the behaviour of the structures under the applied load. In the current chapter, the internal forces created in the beams are studied. As explained in the previous chapters, the beam is a component of the structures supports on the columns and carries the loads from the slab. The beam may be simple beam, cantilever, beam with overhang, compound and continuous beams. All the types of beams are indicated in Fig. 3.1.

Fig. 3.1: Types of beam

From this figure, it can be seen that the simple beam is beam supported on two supports and the cantilever beam is supports on one support; fixed support. The beam with overhang is a beam with one or two cantilever. The
compound beam is beam has intermediate hinges. The continuous beam has two or more span.

3.2. Type of the Internal Force

The loads on the beam transfer to the supports through the beam by three internal forces in the two dimensional analysis (2D). These internal forces are normal force, shear force and bending moment and these can be proved by considering a free body diagram of the beam as shown in Fig. 3.2. We take a section in the beam as shown in Fig. 3.2.c. This section must be in equilibrium so that horizontal force, shear force and bending moment must be created at the cutting section to maintain equilibrium as shown in Fig. 3.2.d. These forces are called the internal forces at this section.

Fig. 3.2. a: Beam

Fig. 3.2. b:
FBD

Fig. 3.2. c: Section

Fig. 3.2. d: Internal forces

The internal forces in the beam and the frame can be explained as below:-
1- Normal Force or Thrust (N)
It is the summation of all forces to the left or the right of the section parallel to the center line of the beam. It may be tension (+) or compression $(-)$ as illustrated in Fig. 3.3.

aa) Tension force (+)
b) Compression force (-)

Fig. 3.3: The normal force

2- Shear Force

Shear force is created where two opposite forces try to cut tear or rip something in two (see Fig. 3.4). The shear force is numerically equal to the algebraic sum of all the vertical forces acting on the free body taken from either sides of the section. Also it can be defined as the summation of all the forces perpendicular

to the center line of

Fig. 3.4: Deformation of the shear force

3- Bending Moment

The bending moment is a term used to describe the force or torque. It is exerted on a material and leads to the event of bending or flexure within that material. The bending is measured in terms of force and distance. The member is being bent under the bending moment. Its deformation is characterized by a bent shape stretched and squashed at the same time as shown in Fig. 3.5.

Fig. 3.5: Flexure of the beam
$>$ Normal Force Diagram (NFD) indicates how a force applied parallel to the axis of a beam is transmitted along the length of that beam.
$>$ Shear Force Diagram (SFD) indicates how a force applied perpendicular to the axis (parallel to cross section) of a beam is transmitted along the length of that beam.
$>$ Bending Moment Diagram (BMD) shows how the applied loads to a beam create a moment variation along the length of the beam.

3.3. Sign Convention

Sin conventions of the internal forces that have been mostly commonly adopted in structural analysis are shown in Fig. 3.6 The normal force is considered tension force and is taken positive sign if the summation of the forces parallel the beam center line from left or right interred the cross section.

The shear force is considered to be positive if the sum of the force from the left is upward. Also the shear force is considered to be negative if the sum of the force from the left is downward or the sum of the force from the right is upward.

Tension

Compression

1) Normal Force

2) Shear Force

3) Bending Moment

Fig. 3.6: Sign convention of the internal forces

3.4. Relationships between the Applied Forces, Shear Force and Bending Moment

To improve these relationships, take a portion with distance dx from the simple beam shown in Fig. 3.7. By applying the equations of static equilibrium on this section, it can be concluded that:-

$$
\begin{equation*}
1-\sum \mathrm{F}_{\mathrm{y}}=0 \gg \mathrm{Q}-\mathrm{pdx}-(\mathrm{Q}-\mathrm{Qdx})=0 \therefore \frac{\mathrm{dQ}}{\mathrm{dx}}=-\mathrm{p} \tag{1}
\end{equation*}
$$

This means that the slope of shearing force diagram at any point is equal to the intensity of the load at that point (pt / m). From equation (1), it can be noted that

For the portion of the beam with no loads, the slop of shear force diagram is zero.

* For the portion of the beam in which the applied load is uniform load, the slop of shear force diagram is constant.

Fig. 3.7
2- $\sum M_{c}=0 \quad \ggg>M+Q d x-p d x \frac{d x}{2}-(M+d M)=0$
By neglecting the tearm $p d x \frac{d x}{2}$ becouse it is very small,
it can be found that
$\frac{d M}{d x}=Q$.
This means that the slope of the bending moment diagram at any point equals to the shearing force at that point. From equation (3), it can be noted that
*The bending moment diagram will be a straight line in the portion of the beam in which the shear force diagram is constant.
The bending moment diagram will be curved in the portion of the beam in which the shear force diagram varies in any manner.

* At a point of zero shears, the maximum bending moment occurs.

3.5. Solved Examples

Example (1)

For the given simple beam in Fig. 3.8, draw the normal force, shear force and bending moment diagram due to the applied load.

Fig. 3.8.a

Solution

$>\underline{\text { At the first, find the reactions at the two supports }}$

The horizontal reaction at $\mathrm{a}=0$ and the vertical reactions at $\mathrm{a} \& \mathrm{~b}$ are 10 t
$>$ At the second, draw normal force.
The normal force is the summation of all the forces parallel to the axis of the centre line of the beam and it is zero.
$>$ At the third, draw shear force as the bellow steps:-
1- Start the Shear Force Diagram at the first value of the force acting on the beam point\#a. In this case it is $\mathrm{a}+10 \mathrm{t}$ due to the reaction at point a .

2- Keep moving across the beam, stopping at every load that acts on the beam.

3- Under the concentrated load, a negative 20 t force comes. We will minus 20 t from the existing $10 \mathrm{t}(10 \mathrm{t}-20 \mathrm{t}=-10 \mathrm{t})$.

4- Moving across the beam again, we come to another force; a positive 10 t (reaction at support b). Again, add this $+10 t$ to the shear force diagram $(-10 t)$. This force makes zero shear force at the end of the beam. It is the final Shear Force Diagram (SFD).

- At the fourth, draw bending moment diagram as the bellow steps:-

1- Start the bending moment diagram at the support a. At this joint, the bending moment equals zero.

2- Calculate the moment under the applied load. The moment $=\mathrm{Y}_{\mathrm{a}} \mathrm{x} 3=30 \mathrm{mt}$.
3- Join the calculated moment with the moment at a.
4- The end moment (at point\#b) is zero.
5- Join the moment at joint\#b with the moment under the concentrated load.

B.M.D

Fig. 3.8.b

Example (2)

For the given simple beam in Fig. 3.9, draw the normal force, shear force and bending moment diagram due to the applied load.

Fig. 3.9.a

Solution

$>$ Finding the reactions

a) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=0$
b) $\sum M_{a}=0 \ggg \ggg \gg 20 x 2-Y_{b} x 6=0$
$\therefore Y_{b}=\frac{40}{6}=6.67 t \uparrow$
c) $\sum M_{b}=0 \ggg \ggg \gg 20 x 4-Y_{a} x 6=0 \quad \therefore Y_{a}=\frac{80}{6}=13.33 t \uparrow$
d) Check $\sum \mathrm{F}_{\mathrm{y}}=20-6.67-13.33=0 \ggg \ggg \ggg$ ok
$>$ For drawing B.M.D
M_{1} from left side $=13.333 \times 2=26.67 \mathrm{~m} . \mathrm{t}$

Fig. 3.9.b
Example (3)
Draw the normal force, shear force and bending moment diagrams due to the applied load for the given simple beam in Fig. 3.10.

Fig. 3.10.b

Solution

$>$ Finding the reactions
a) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \ggg \mathrm{X}_{\mathrm{a}}=0$
b) $\sum M_{a}=0 \ggg \ggg \gg 10 x 2+10 x 4-Y_{b} x 6=0 \therefore Y_{b}=\frac{60}{6}=10 t \uparrow$
c) $\sum M_{b}=0 \ggg \ggg \gg 10 x 2+10 x 4-Y_{a} x 6=0 \therefore Y_{a}=\frac{60}{6}=10 t \uparrow$
d) Check $\sum \mathrm{F}_{\mathrm{y}}=10+10-10-10=0 \ggg \ggg \ggg$ ok
$>$ For drawing B.M.D
M_{1} from left side $=10 \times 2=20 \mathrm{~m} . \mathrm{t}$
M_{2} from left side $=10 \times 4-10 \times 2=20 \mathrm{~m} . \mathrm{t}$
or M_{2} from right side $=10 \times 2=20 \mathrm{~m} . \mathrm{t}$

B.M.D

Fig. 3.10.b

Example (4)

Draw the normal force, shear force and bending moment diagrams due to the applied load for the given cantilever in Fig. 3.11.

Fig. 3.11.a

Solution

$>$ Finding the reactions

The fixed support has three reactions Y_{a}, X_{a} and M_{a}
a) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=3 \rightarrow$
b) $\sum M_{a t a}=0 \ggg \ggg \gg 10 x 6-M_{a}=0 \therefore M_{a}=60 m t$ \square
c) $\sum \mathrm{F}_{\mathrm{y}}=10-Y_{a}=0 \gg Y_{a}=10 \mathrm{t} \uparrow$

Fig. 3.11.b

Example (5)

Draw the normal force, shear force and bending moment diagrams due to the applied load for the given cantilever in Fig. 3.12.

Fig. 3. 12.a
Solution
$>$ Finding the reactions
The fixed support has three reactions Y_{a}, X_{a} and M_{a}
a) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=3 \rightarrow$
b) $\sum M_{\text {at } a}=0 \ggg \ggg \gg 10 x 3-M_{a}=0$

$$
\therefore M_{a}=30 \mathrm{mt}
$$

c) $\sum \mathrm{F}_{\mathrm{y}}=10-Y_{a}=0 \gg Y_{a}=10 \mathrm{t} \uparrow$

Fig. 3.12.b

Example (6)

The given simple beam in Fig. 3.13 subjected to uniform load w, draw the normal force, shear force and bending moment diagram due to the applied load.

Fig. 3.13.a

Solution

1- Calculate the reactions at the two supports due to the uniform loads

$$
\mathrm{Y}_{\mathrm{a}}=\mathrm{Y}_{\mathrm{b}}=\frac{\mathrm{wL}}{2} \text { due to symetry }
$$

2- Normal forces equal zero at any point of the beam due to the absent of the forces that are parallel to the center line of the beam.

3- Shear force diagram

- At point a, the shear force equals the reaction Y_{a}
- At any joint of the beam with distance x from point a, the shear force can be calculated from below equation:-

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{x}}=\frac{\mathrm{wL}}{2}-\mathrm{wx} \tag{a}
\end{equation*}
$$

4- Bending moment diagram

- At point a and b, the bending moment equal zero
- At any joint of the beam with distance x from point a, the shear force can be calculated from below equation:-

$$
M_{x}=Y_{a} x-\frac{w x^{2}}{2} \ldots \ldots(b)
$$

It can be noted that the maximum bending moment at shear force $=0$ at the mid-span and it equals $\frac{\mathrm{wL}^{2}}{8}$

- From Eq. b, it can be observed that the bending moment diagram on the beam under uniform load is second order parabola.
- To draw this diagram, flow the below steps:-
a) Draw a line from the beam mid-span perpendicular to the center line of the beam with $\mathrm{wL}^{2} / 4$ length to give point c .
b) From the half of the drawn line in step (a), draw a line parallel to the beam center line. This line is called tangent\#1.
c) Draw a line passes through the start point (a) and the given point (c) in the first step and other line passes through the end point (b) and point (c). The first line is called tangent\#2 and the second is called tangent\#3.
d) Draw parabola tangent the three tangents.

B.M.D

Fig. 3.13.b

Example (7)

The given simple beam in Fig. 3.14 subjected to triangle load w, draw shear force and bending moment diagram due to the applied load.

Fig. 3.14.a

Solution

> Calculate the reactions at the two supports
a) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=0$
b) $\sum M_{a}=0 \ggg \ggg \gg \frac{W L}{2} x \frac{L}{3}-Y_{b} x L=0 \gg \mathrm{Y}_{\mathrm{b}}=\frac{\mathrm{wL}}{6}$
c) $\sum M_{b}=0 \ggg \ggg \gg \frac{W L}{2} x \frac{2 L}{3}-Y_{a} x L=0 \gg \mathrm{Y}_{\mathrm{a}}=\frac{\mathrm{wL}}{3}$
d) Check $\sum \mathrm{F}_{\mathrm{y}}=\frac{\mathrm{wL}}{2}-\frac{\mathrm{wL}}{6}-\frac{\mathrm{wL}}{3}=0 \ggg \ggg>\mathrm{ok}$
> To draw the Shear Force Diagram, flow the below steps:-
a) Draw a line at point (a) perpendicular to the center line of the beam with Y_{a} length (upward or downward) to get point (y). Point (a) is at the base of the triangle load.
b) Draw a dashed line parallel to the beam center line from point (y). This dashed line continues till the concentrated point of the triangle load.
c) Upward or downward with value of wL/2. Then draw a dash line\#2 till the support b (head of triangle load).
d) Divide the dashed line\#2 to get point x .
e) Draw inclined line pass through point x and point y .
f) Draw parabola tangent the inclined line and the dashed line\#2.
$>$ To draw the bending moment diagram, flow the below steps:-
a) Draw a vertical line from the concentrated point of the triangle load perpendicular to the center line of the beam with $\mathrm{wL}^{2} / 9$ length to give point c .
b) Draw a line parallel to the beam center line with $w L^{2} / 9 \sqrt{2}$ distance on the vertical line. This line is called tangent\#1.
c) Draw one line passes through the start point (a) and the given point (c) in the first step and other line passes through the end point (b) and point (c). The first line is called tangent\#2 and the second is called tangent\#3.
d) Draw parabola tangents the three tangents.

B.M.D

Fig.

Example (8)

The given simple beam in Fig. 3.15 subjected to triangle load w, draw shear force and bending moment diagram due to the applied load.

Solution

B.M.D

Fig. 3.15

Example (9)
The given simple beam in Fig. 3.16 subjected to triangle load w, draw shear force and bending moment diagram due to the applied load.

Solution

B.M.D

Fig. 3.17
Example (10)
For the shown cantilever in Fig. 3.18 subjected to uniform load w, draw shear force and bending moment diagram due to the applied load.

Solution

S.F.D

Fig. 3.18

Example (11)

The given cantilever in Fig. 3.19 subjected to triangle load w, draw shear force and bending moment diagram due to the applied load.

Solution

Fig. 3.19

Example (12)

The given cantilever in Fig. 3.20 subjected to triangle load w, draw shear force and bending moment diagram due to the applied load.

Solution

Fig. 3.20

Example (13)

For the given simple beam in Fig. 3.21, draw the normal force, shear force and bending moment diagram due to the applied load.

Fig. 3.21
Solution
$>$ Finding the reactions
a) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=0$
b) $\sum M_{a}=0 \ggg \ggg \gg 12 x 2+4 x 1+8 x 4-Y_{b} x 6=0$

$$
\therefore Y_{b}=\frac{60}{6}=10 t \uparrow
$$

c) $\sum M_{b}=0 \ggg \ggg \gg 8 x 2+12 x 4+4 x 5-Y_{a} x 6=0$

$$
\therefore Y_{a}=\frac{84}{6}=14 t \uparrow
$$

d) Check $\sum \mathrm{F}_{\mathrm{y}}=12+4+8-14-10=0 \ggg \ggg \gg$ ok
> For drawing B.M.D
M_{1} from left side $=14 \times 2-4 \mathrm{x} 1=24 \mathrm{~m} . \mathrm{t}$

Fig. 3.21

Example (14)

Draw the shear force and bending moment diagram due to the applied load for the given simple beam in Fig. 3.22.

Fig. 3.22.a

Solution

$>$ Finding the reactions

The fixed support has three reactions $\mathrm{Y}_{\mathrm{a}}, \mathrm{X}_{\mathrm{a}}$ and Ma_{a}
d) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=0$
e) $\sum M_{a t a}=0 \ggg \ggg \ggg>3 x 3+3 x 6+3 x 9-M_{a}=0$

$$
\therefore M_{a}=54 m t
$$

f) $\sum \mathrm{F}_{\mathrm{y}}=3+3+3-Y_{a}=0 \gg Y_{a}=9 \mathrm{t} \uparrow$
$>$ For drawing B.M.D
M_{2} from right side $=-3 \times 3=-9 \mathrm{~m} . \mathrm{t}$
M_{1} from right side $=-3 \times 3-3 \times 6=-27 \mathrm{~m} . \mathrm{t}$

S.F.D

54 m.t

Fig. 3.22.b

Example (15)

Draw the normal force, shear force and bending moment diagram due to the applied load for the given simple beam in Fig. 3.23.

Fig. 3.23.a

Solution

$>$ Finding the reactions
a) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=0$
b) $\sum M_{a}=0 \ggg \ggg \gg 5.19 x 1+6 x 3.5-Y_{b} x 5=0$

$$
\therefore Y_{b}=\frac{26.190}{5}=5.238 t \uparrow
$$

c) $\sum M_{b}=0 \ggg \ggg \ggg>1.5+5.19 x 4-Y_{a} x 5=0$

$$
\therefore Y_{a}=\frac{29.76}{5}=5.952 t \uparrow
$$

d) Check $\sum \quad \int \mathrm{F}_{\mathrm{y}}=6+5.19-5.952-5.238=0 \ggg \ggg \gg \mathrm{ok}$
$>$ For drawing B.M.D
M_{1} from left side $=5.95 \times 1=5.59 \mathrm{~m} . \mathrm{t}$
M_{2} from left side $=5.95 \times 2-5.19 \times 1=6.72 \mathrm{~m} . \mathrm{t}$

N.F.D

B.M.D

Fig. 3.23.b

Example (16)

Draw the shear force and bending moment diagrams due to the applied bending moment for the given simple beam in Fig. 3.24.

Fig. 3.24.a
Solution
$>$ Finding the reactions
a) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=0$
b) $\sum M_{a}=0 \ggg \ggg \ggg 10-Y_{b} x 8=0$

$$
\therefore Y_{b}=\frac{10}{8}=1.25 t \uparrow
$$

c) $\sum M_{b}=0 \ggg \ggg \ggg 10+Y_{a} x 8=0$

$$
\therefore Y_{a}=\frac{-10}{8}=1.25 t \downarrow
$$

Check $\sum \mathrm{F}_{\mathrm{y}}=1.25-1.25=0 \ggg \ggg \gg \mathrm{ok}$
$>$ For drawing B.M.D
M_{1} from left side $=-1.25 \times 2=-2.5 \mathrm{~m} . \mathrm{t}$
M_{1} from right side $=1.25 \times 6=7.5$

Fig. 3.24.b

Example (17)

Draw the shear force and bending moment diagrams due to the applied bending moment for the given simple beam in Fig. 3.25.

Fig. 3.25.a

Solution

$>$ Finding the reactions
a) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=0$
b) $\sum M_{a}=0 \ggg \ggg \gg 10-Y_{b} x 8=0$

$$
\therefore Y_{b}=\frac{10}{8}=1.25 t \uparrow
$$

c) $\sum M_{b}=0 \ggg \ggg \gg 10+Y_{a} x 8=0$

$$
\therefore Y_{a}=\frac{-10}{8}=1.25 t \downarrow
$$

Check $\sum \mathrm{F}_{\mathrm{y}}=1.25-1.25=0 \ggg \ggg \gg$ ok
$>$ For drawing B.M.D
M_{1} from left side $=-1.25 \times 4=-5 \mathrm{~m} . \mathrm{t}$
M_{1} from right side $=1.25 \times 4=5$

Fig. 3.25.b

Example (18)

Draw the shear force and bending moment diagrams due to the applied bending moment for the given simple beam in Fig. 3.26.

Fig. 3.26.a

Solution

$>$ Finding the reactions
a) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=0$
b) $\sum M_{a}=0 \ggg \ggg \gg 10-Y_{b} x 8=0 \therefore Y_{b}=\frac{10}{8}=1.25 t \uparrow$
c) $\sum M_{b}=0 \ggg \ggg \ggg 10+Y_{a} x 8=0 \therefore Y_{a}=\frac{-10}{8}=1.25 t \downarrow$

Check $\sum \mathrm{F}_{\mathrm{y}}=1.25-1.25=0 \ggg \ggg \gg$ ok
$>$ For drawing B.M.D
M_{b} from left side $=-1.25 \times 8=-10 \mathrm{~m} . \mathrm{t}$
M_{b} from right side $=0$

Fig. 3.26.b

Example (19)

Draw the normal force, shear force and bending moment diagram due to the applied load for the given simple beam in Fig. 3.27.

Fig. 3.27.a

Solution

\rightarrow Finding the reactions
a) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=6.06 \mathrm{t} \rightarrow$
b) $\sum M_{a}=0 \ggg \ggg \ggg+3.5 x 3-Y_{b} x 4.5=0$

$$
\therefore Y_{b}=\frac{16.5}{4.5}=3.67 t \uparrow
$$

c) $\sum M_{b}=0 \ggg \ggg \ggg-3.5 x 1.5+Y_{a} x 5=0$

$$
\therefore Y_{a}=\frac{-0.75}{4.5}=0.17 t \downarrow
$$

Check $\sum \mathrm{F}_{\mathrm{y}}=3.5+0.17-3.67=0 \ggg \ggg \gg \mathrm{ok}$

$>$ For drawing B.M.D

M_{1} from left side $=-0.17 \times 1.5=-0.255 \mathrm{~m} . \mathrm{t}$
M_{1} from right side $=3.67 \times 3-3.5 \times 1.5=5.75$
M_{2} from right side $=3.67 \times 1.5=5.57 \mathrm{~m} . \mathrm{t}$

S.F.D

B.M.D

Fig. 3.26.b
Example (20)
Draw the shear force and bending moment diagram due to the applied load for the given cantilever in Fig. 3.27.

Solution

Fig. 3.27.a
$>$ Finding the reactions
a) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=0 \rightarrow$
b) $\sum M_{a t a}=0 \ggg \ggg \ggg+2.5 x 1.25-M_{a}=0$

$$
\therefore M_{a}=10.125 \mathrm{~m} . t
$$

c) $\sum \mathrm{F}_{\mathrm{y}}=2.5-Y_{a}=0 \gg Y_{a}=2.5 \mathrm{t} \uparrow$
$>$ For drawing B.M.D
M_{a} from left side $=-10.125$ m.t $\quad M_{1}$ from left side=-10.125-
$2.5 \times 1.25+2.5 \times 2.5=-7 \mathrm{~m} . \mathrm{t} \quad \mathrm{M}_{2}$ from right side $=-7 \mathrm{~m} . \mathrm{t}$

S.F.D

10.125
B.M.D

Fig. 3.27.b

Example (21)

Draw the shear force and bending moment diagram due to the applied load for the given cantilever in Fig. 3.28.

Fig. 3.28.a

Solution

$>$ Finding the reactions

The fixed support has three reactions Y_{a}, X_{a} and M_{a}

$$
\begin{aligned}
& \sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=6 \rightarrow \\
& \sum M_{a t a}=0 \ggg \ggg \ggg 2 x 2+10+7 x 5.5-6 x 1-M_{a}=0 \\
& \quad \therefore M_{a}=48.5 m t
\end{aligned}
$$

a) $\sum \mathrm{F}_{\mathrm{y}}=7+3-Y_{a}=0 \gg Y_{a}=10 \uparrow$
$>$ For drawing B.M.D
M_{1} from left side $=-48.5-3 \times 2+10 \times 4=-14.5 \mathrm{~m} . \mathrm{t}$
M_{1} from right side $=-7 \times 1.5+6=-4.5 \quad \mathrm{M}_{2}$ from right side $=6 \times 1=6 \mathrm{~m} . \mathrm{t}$

N.F.D
S.F.D

B.M.D

Fig. 3.28.b

Example (22)
Draw the normal force, shear force and bending moment diagram due to the applied load for the beam with two overhangs in Fig. 3.29.

Fig. 3.29.a

Solution

$\sum F_{x}=0.0 \quad X_{a}=0.0$
$\sum M_{a}=0.0-6 x 2+6 x 1+12 x 2+12 x 4-6 Y_{b}+6 x 7=0 \quad Y_{b}=18 t \uparrow$
$\sum M_{b}=0.0 \quad 6 x 1-6 x 5-12 x 2-12 x 4+6 Y_{a}-6 x 2=0 \quad Y_{a}=24 t \uparrow$
Check $\sum F_{y}=24+18-12-12-6-6-6=0 \quad O k$
For drawing B.M.D
M_{a} from left side $=-6 \times 2=-12 \mathrm{~m} . \mathrm{t}$
M_{c} from left side $=-6 \times 4-6 \times 1+24 \times 2=18 \mathrm{~m} . \mathrm{t}$
M_{b} from right side $=-6 \times 1=-6 \mathrm{~m} . \mathrm{t}$

Fig. 3.29.a

Draw the normal force, shear force and bending moment diagram due to the applied load for the beam with one overhang in Fig. 3.30.

Fig. 3.30.a

Solution

$\sum F_{x}=0.0$
$X_{a}=10 \leftarrow$
$\sum M_{a}=0.0-10 \times 1.5+10 \times 1+6 x 3.5-5 Y_{b}=0 \quad Y_{b}=3.2 t \uparrow$
$\sum M_{b}=0.0 \quad 6 x 1.5+10 \times 4+10 \times 6.5-5 Y_{a}=0 \quad Y_{a}=22.8 t \uparrow$
Check $\sum F_{y}=22.8+3.2-20-6=0 \quad O k$
$>$ For drawing B.M.D
M_{a} from left side $=-10 \times 1.5=-15 \mathrm{~m} . \mathrm{t}$
M_{1} from left side $=-10 \times 2.5+22.8 \times 1=-2.2 \mathrm{~m} . \mathrm{t}$
M_{2} from right side $=3.2 \times 3-6 \times 1.5=0.6 \mathrm{~m} . \mathrm{t}$

Fig. 3.30.b

Example (24)

Draw the normal force, shear force and bending moment diagram due to the applied load for the simple beam in Fig. 3.31.

Fig. 3.32.a

Solution

$>$ Finding the reactions

$$
\begin{array}{lc}
\sum F_{x}=0.0 & X_{a}=6 t \rightarrow \\
\sum M_{a}=0.0 & 3 x 0.75+6 x 1.5+6 x 4.5+8 x 4.5-6 Y_{b}=0 \\
& Y_{b}=12.375 t \uparrow \\
\sum M_{b}=0.0 & 8 x 1.5+6 x 1.5+6 x 4.5+3 \times 5.25-6 Y_{a}=0 \\
& Y_{a}=10.625 t \uparrow
\end{array}
$$

Check $\sum F_{y}=12.375+10.625-3-6-6-8=0 \quad O k$
\rightarrow For drawing B.M.D
M_{1} from left side $=-3 \times 0.75+10.625 \times 1.5=13.688 \mathrm{~m} . \mathrm{t}$
M_{2} from left side $=-6 \times 1.5-3 \times 2.25+10.625 \times 3=16.125 \mathrm{~m} . \mathrm{t}$
M_{3} from right side $=12.375 \times 1.5-3 \times 0.75=16.3125 \mathrm{~m} . \mathrm{t}$

B.M.D

Fig. 3.31.a

Example (25)
Draw the shear force and bending moment diagram due to the applied load for the given beam with two overhangs in Fig. 3.32.

Fig. 3.32.a
$>$ Finding the reactions

$$
\begin{array}{cc}
\sum F_{x}=0.0 & X_{a}=3 t \leftarrow \\
\sum M_{a}=0.0 & 12+10 x 3-6+6 x 6-6 Y_{b}+3 x 8-6 x 1=0 \\
& Y_{b}=15 t \uparrow \\
\sum M_{b}=0.0 & 12-6 x 7-10 x 3-6+3 x 2-6 Y_{a}=0 \\
& Y_{a}=10 t \uparrow
\end{array}
$$

Check $\sum F_{y}=15+10-10-6-3-6=0 \quad O k$
> For drawing B.M.D
M_{a} from left side $=-6 \times 2=-12 \mathrm{~m} . \mathrm{t}$
M_{c} from left side $=-6 \times 4-6 \times 1+24 \times 2=18 \mathrm{~m} . \mathrm{t}$
M_{b} from right side $=-6 \times 1=-6 \mathrm{~m} . \mathrm{t}$

Fig. 3.32.b

Example (26)

Draw the shear force and bending moment diagram due to the applied load for the given beam with two overhangs in Fig. 3.33.

Fig. 3.33.a

Solution

$>$ Finding the reactions

$$
\begin{array}{lcl}
\sum F_{x}=0.0 & X_{a}=0 & \\
\sum M_{a}=0.0 & 24 x 3-6 x 1+6 x 7-6 Y_{b}=0 & Y_{b}=18 t \uparrow \\
\sum M_{b}=0.0 & 24 x 3+6 x 7-6 x 1-6 Y_{a}=0 & Y_{a}=18 t \uparrow \\
\text { Check } \sum F_{y}=24+6+6-18-18=0 \quad 0 k & \\
>\text { For drawing B.M.D }
\end{array}
$$

M_{a} from left side $=-6 \times 1=-6 m . t$
M_{b} from right side $=-6 \times 1=-6 \mathrm{~m} . \mathrm{t}$

Fig. 3.33.b

Example (27)

Draw the normal force, shear force and bending moment diagrams due to the applied load for the given beam with two overhangs in Fig. 3.34.

Fig. 3.34.a

Solution

$>$ Finding the reactions

$$
\begin{array}{cc}
\sum F_{x}=0.0 & X_{a}=4 t \rightarrow \\
\sum M_{a}=0.0 & 11.25 \times 4.5+3 \times 11-6 \times 1-2 \times 0.5-9 Y_{b}=0 \\
& Y_{b}=8.51 t \uparrow \\
\sum M_{b}=0.0 & 11.25 \times 4.5+6 \times 10+2 \times 9.5-3 \times 2-9 Y_{a}=0 \\
& Y_{a}=13.74 t \uparrow
\end{array}
$$

Check $\sum F_{y}=11.25+2+6+3-8.51-13.74=0 \quad O k$
$>$ For drawing B.M.D
M_{a} from left side $=-6 \times 1-2 \times 0.5=-7 \mathrm{~m} . \mathrm{t}$
M_{b} from right side $=-3 \times 2=-6 \mathrm{~m} . \mathrm{t}$

N.F.D

S.F.D

Fig. 3.34

Example (27)
Draw the normal force, shear force and bending moment diagrams due to the applied load for the given beam with two overhangs in Fig. 3.35.

Fig. 3.35.a

Solution

$>$ Finding the reactions

$$
\begin{array}{cc}
\sum F_{x}=0.0 & X_{a}=10 t \rightarrow \\
\sum M_{a}=0.0 & 10 \times 1+2.25 x 4+1.13 x 5.5-5 Y_{b}=0 \\
& Y_{b}=5.04 t \uparrow \\
\sum M_{b}=0.0 & 10 x 4+2.25 x 1-1.13 x 0.5-5 Y_{a}=0 \\
& Y_{a}=8.34 t \uparrow
\end{array}
$$

Check $\sum F_{y}=10+2.25+1.13+-8.34-5.04=0 \quad O k$
$>$ For drawing B.M.D
M_{1} from left side $=8.34 \times 1=8.34 \mathrm{~m} . \mathrm{t}$
M_{2} from left side $=8.34 \times 2-10 \times 1=6.68 \mathrm{~m} . \mathrm{t}$
M_{b} from left side $=-1.13 \times 0.5=-0.565 \mathrm{~m} . \mathrm{t}$

N.F.D

S.F.D

B.M.D

Fig.3.35.b

Example (28)

Draw the normal force, shear force and bending moment diagrams due to the applied load for the given beam with two overhangs in Fig. 3.36.

Fig. 3.36.a

Solution

$>$ Finding the reactions

$$
\sum M_{a}=0 \quad 1.73 \mathrm{x} 1+5 \mathrm{x} 1+3.54 \mathrm{x} 6-8 Y_{b}=0 \quad Y_{b}=3.5 t \uparrow
$$

$$
\sum M_{b}=0 \quad 1.73 \mathrm{x} 7-5 \mathrm{x} 1+3.54 \mathrm{x} 2-8 Y_{a}=0 \quad Y_{a}=1.77 t \uparrow
$$

$$
\sum F_{x}=0.0 \quad X_{b}=2.46 t \leftarrow
$$

Check $\quad \sum \mathrm{F}_{\mathrm{y}}=1.73+3.54-3.5-1.77=0.0 \ldots$ OK
> For drawing B.M.D
M_{1} from left side $=1.77 \times 1=1.77 \mathrm{~m} . \mathrm{t}$
M_{2} from left side $=1.77 \times 3-1.73 \times 2=1.85 \mathrm{~m} . \mathrm{t}$
M_{2} from right side $=3.5 \times 5-3.54 \times 3=6.88 \mathrm{~m} . \mathrm{t}$
M_{2} for the cantilever $=5 \times 1=-5 \mathrm{~m} . \mathrm{t}$

S.F.D

B.M.D

Fig. 3.36.b

Example (29)

Draw the normal force, shear force and bending moment diagram due to the applied load for the given compound beam in Fig. 3.37.

Fig. 3. 37.a

Solution

\rightarrow For part $a-b$
$F_{x}=0.0 \quad X_{a}=9 t \rightarrow$
$\sum M_{a}=0.0 \gg 6 x 2+6+6 x 4+9 x 6+6 x 7.5-6 Y_{b}=0.0 \gg Y_{b}=23.5 t \uparrow$
$\sum M_{b}=0.0 \gg 6 x 1.5+6-6 x 2-6 x 4+6 Y_{a}=0.0 \quad \gg \quad Y_{a}=3.5 t \uparrow$
Check $\sum F_{y}=6+6+6+9-3.5-23.5=0 \quad O k$
$>$ For part $c-a$
$\sum F_{y}=0 \quad Y_{c}=12.5 t \uparrow$
$\sum M_{c}=0 \quad M_{c}=19.5 \mathrm{tm} . \mathrm{t}$
$\sum F_{x}=0 \quad X_{a}=9 t \rightarrow$

Fig. 3. 37.b

Example (30)

For the given compound beam in Fig. 3.38, draw the normal force, shear force and bending moment diagram due to the applied load.

Fig. 3. 38

$>$ For part ec
$\sum M_{e}=0.0 \gg 8 x 3+6-6 Y_{c}=0.0 \quad \gg Y_{c}=5 t \uparrow$
$\sum M_{c}=0.0 \gg 6-8 x 3+6 Y_{e}=0.0 \quad \gg Y_{e}=3 t \uparrow$
Check $\quad \sum F_{y}=8-3-5=0 \quad O k$
$\mathrm{X}_{\mathrm{c}}=\mathrm{R} \sin \Theta$ and $\mathrm{Y}_{\mathrm{c}}=\mathrm{R} \cos \Theta$

$$
\frac{\mathrm{X}_{\mathrm{c}}}{\mathrm{Y}_{\mathrm{c}}}=\frac{\sin \theta}{\cos \theta}=\tan \theta \quad \gg X_{c}=4 t \leftarrow
$$

$\sum F_{x}=0.0 \quad X_{e}=4 t \rightarrow$
$>$ For part d-b-e
$\sum F_{x}=0.0 \quad X_{d}=4 t \rightarrow$
$\sum M_{d}=0.0 \gg 12 x 3+3 x 8-6 Y_{c}=0.0 \quad \gg Y_{b}=10 t \uparrow$
$\sum M_{b}=0.0 \gg 2 x 3-12 x 3+6 Y_{d}=0.0 \quad \gg Y_{d}=5 t \uparrow$
Check $\quad \sum F_{y}=3+12-10-5=0 \quad O k$
$>$ For part ad
$\sum \mathrm{F}_{\mathrm{y}}=0.0 \quad \mathrm{Y}_{\mathrm{c}}=11 \mathrm{t} \uparrow$
$\sum \mathrm{M}_{\mathrm{c}}=-\sum \mathrm{M}_{\mathrm{c}}$ fixed $\quad \mathrm{M}_{\mathrm{c}}=24 \mathrm{~m} . \mathrm{t}$
$\sum \mathrm{F}_{\mathrm{x}}=0.0 \quad \mathrm{Xa}=4 \mathrm{t} \rightarrow$

Fig. 3. 38.b

Example (31)

Draw the normal force, shear force and bending moment diagram due to the applied load for the given compound beam in Fig. 3.39.

Fig. 3.39.a

$>$ Finding the reactions

> For part k-L

$$
\begin{array}{ll}
\sum M_{k}=0.0>12 x 4-6 Y_{L}=0.0 & \gg Y_{L}=8 t \uparrow \\
\sum M_{L}=0.0 \gg 12 x 2-6 Y_{k}=0.0 & \gg Y_{k}=4 t \uparrow \\
\text { Check } \sum F_{y}=12-8-4=0 \quad \text { Ok } &
\end{array}
$$

$>$ For part $a-b-k$
$\sum M_{a}=0.0 \quad \gg 8 x 2.6+8 x 5.2+4 x 9.8-7.8 Y_{b}=0.0 \quad \gg Y_{b}=13 t \uparrow$
$\sum M_{L}=0.0>8 x 2.6+8 x 5.2-4 x 2-7.8 Y_{a}=0.0 \quad \gg Y_{a}=7 t \uparrow$
Check $\quad \sum F_{y}=8+8+4-13-7=0 \quad O k$
$>$ For part L-c-e
$\sum M_{c}=0.0 \gg 18 x 3-8 x 2-6 Y_{e}=0.0 \quad \gg Y_{e}=6.33 t \uparrow$
$\sum M_{L}=0.0>18 x 3+8 x 8-6 Y_{c}=0.0 \gg Y_{c}=19.67 t \uparrow$
Check $\quad \sum F_{y}=18+8-6.33-19.67=0 \quad O k$
$>$ For drawing B.M.D
$>$ For part $a-b-k$
M_{1} from left side $=7 \times 2.6=18.2 \mathrm{~m} . \mathrm{t}$
M_{2} from left side $=7 \times 5.2-8 \times 2.6=15.4 \mathrm{~m} . \mathrm{t}$
M_{b} from right side $=4 \times 2=-8 \mathrm{~m} . \mathrm{t}$
$>$ For part kL
M_{3} from left side $=4 \mathrm{x} 4=16 \mathrm{~m} . \mathrm{t}$
$>$ For part Lce
M_{c} from left side $=-8 \mathrm{x} 2=16 \mathrm{~m} . \mathrm{t}$

Fig. 3.39.b

Example (32)

For the given inclined beam in Fig. 3.8, draw the normal force, shear force and bending moment diagram due to the applied load.

Fig. 3.40.a

$>$ Finding the reactions

$$
\begin{array}{lll}
\sum M_{a}=0.0>8 x 1+16 x 4+8 x 7-8 Y_{b}=0.0 & \gg Y_{b}=16 t \uparrow \\
\sum M_{b}=0.0 \gg x 1+16 x 4+8 x 7-8 Y_{a}=0.0 & \gg Y_{a}=16 t \uparrow
\end{array}
$$

Check $\quad \sum F_{y}=16+8+8-16-16=0 \quad O k$
$>$ For drawing B.M.D
M_{1} from left side $=16 \times 2-8 \times 1=24 \mathrm{~m} . \mathrm{t}$
M_{2} from right side $=16 \times 2-8 \times 1=24 \mathrm{~m} . \mathrm{t}$

Fig. 3.40.b

Example (33)

For the given trussed beam in Fig. 3.41, draw the normal force, shear force and bending moment diagram due to the applied load.

Fig. 3.41.a
Solution

$>$ Finding the reactions

$\sum M_{a}=0.0 \quad \gg-24 x 1+12 x 4-6 Y_{b}=0.0 \quad \gg Y_{b}=4 t \uparrow$
$\sum M_{b}=0.0 \gg 24 x 7+12 x 2-6 Y_{a}=0.0 \quad \gg Y_{a}=32 t \uparrow$
Check $\quad \sum F_{y}=24+12-4-32=0 \quad O k$

$$
\begin{gathered}
\mathrm{Y}_{\mathrm{a}}=\frac{3}{5} \mathrm{R}_{\mathrm{a}} \quad \text { and } \mathrm{X}_{\mathrm{a}}=\frac{4}{5} \mathrm{R}_{\mathrm{a}} \quad \ggg>\mathrm{X}_{\mathrm{a}}=\frac{4}{3} \mathrm{Y}_{\mathrm{a}}=42.667 t \leftarrow \\
\mathrm{R}_{\mathrm{a}}=\frac{5}{3} \mathrm{Y}_{\mathrm{a}} \ggg \ggg \ggg 33.333 \mathrm{t}(\text { comp }) \\
\sum \mathrm{F}_{\mathrm{x}}=0.0 \quad \mathrm{X}_{\mathrm{b}}=42.667 \mathrm{t} \rightarrow \\
128
\end{gathered}
$$

Fig. 3.41.b
To draw the internal forces, consider the equilibrium of joint\#a and joint\#b as shown in Fig.3.31.c

Joint\#a

Fig. 3.41.c

N.F.D

S.F.D

B.M.D

Fig. 3.41.d

Example (34)

For the given continuous beam in Fig. 3.42, draw the normal force, shear force and bending moment diagram due to the applied load if the bending moments at support a, b and are indicated.

$$
M_{a}=-20.31 \text { m.t } \quad M_{b}=-20.125 \text { m.t } \quad M_{a}=-19.90 \text { m.t }
$$

Fig. 3.42.a
Solution

Fig. 3.42.b
$\sum M_{b}$ from left side $=-20.125 \gg-20.31-27 x 4.5+9 Y_{a}=$ $-20.125 \quad Y_{a}=13.52 t \uparrow$
$\sum M_{b}$ from right side $=-20.125 \gg-19.90-15 x 2-15 x 4+6 Y_{c}=$ $-20.125 \quad Y_{c}=14.963 t \uparrow$
$\sum M_{a}$ from left side $=-20.31 \gg-27 x 4.5-15 x 11-15 x 13-19.9+$ $14.96 \times 15+9 Y_{b}=-20.31 \quad Y_{b}=28.52 t \uparrow$

Check $\sum F_{y}=27+15+15-13.52-14.963-28.52=0 \quad O k$

Fig. 3.42.c

Example (35)

For the given a bending moment diagram in Fig. 3.43, put the static system of a beam to give this bending diagram.

Fig. 3.43.a
Solution

1- The structural system of the beam that has bending moment diagram indicated in Fig. 3.43.a must be cantilever beam because this moment is negative moment.
2- The location of fixed support is at point\#a.
3- The bending moment in portion 1-2 is constant so that shear force in this part is zero and there is no force in this part and the applied load is bending moment and it equals $10 \mathrm{mt}\left(Q=\frac{d M}{d x}\right.$ and $\left.p=\frac{d Q}{d x}\right)$.
4- The bending moment diagram in portion a -1is a straight line so that the shear force diagram is constant and the applied load is concentrated load at point\#1. The value of the concentrated load P1 can be calculated as below:-

5- $M_{a}=10+P x 3.5 \ggg P=\frac{(27.5-10)}{3.5}=5 t \downarrow$

Fig. 3.43.b

Example (36)

The given diagram in Fig. 3.44 is a bending moment. Put the applied load on the beam to give this bending diagram.

Fig. 3.44.a

Solution

In the natural case, the bending moment is zero at the end hinge and roller supports. In the beam shown in Fig. 3.44.a, the beam has bending moments at the two supports. This means that there are two moments at the two supports; $\mathrm{M}_{\mathrm{a}}=-10 \mathrm{mt}$ and $\mathrm{M}_{\mathrm{b}}=-5 \mathrm{mt}$. Additionally there are any different in the bending moment in span $\mathrm{a}-\mathrm{b}$ or the slop of the bending moment is zero. This means that there are not applied load in this span.

Fig. 3.44.b

Example (38)

The given diagram in Fig. 3.45 is a bending moment. Conclude the applied load on the beam to give this bending diagram.

Fig. 3.45.a
Solution

1- The bending moment in portion 1-2 is a straight line started with zero at a and with value at point\#2 so that shear force in this part is constant and the applied is concentrated load (P) at point\#1 $\left(Q=\frac{d M}{d x}\right.$ and $\left.p=\frac{d Q}{d x}\right)$.

2- The value of the concentrated load can be calculated from the moment at point\#2

$$
M_{2}=P x 4 \ggg>P=5 t \downarrow
$$

3- The bending moment diagram in portion a-2 is a parabola from the second degree so that the shear force diagram is a straight line and the applied load is uniform load in this portion.
4- The intensity of the uniform load can be calculated as below:-

$$
\frac{W L^{2}}{8}=\frac{9}{8} \therefore w=1 t / m
$$

Fig. 3.45.b

Example (38)

For the given compound beam in Fig. 3.46, conclude the applied load (P) to give negative moment at support b equals the maximum positive moment in span a-b.

Fig. 3.46.a

Solution

$>$ For part d-c
$F_{x}=0.0 \quad X_{a}=0.0$

$$
\begin{array}{ll}
\sum M_{d}=0.0 \quad \gg 8 x 2-4 Y_{c}=0.0 & \gg Y_{c}=4 t \uparrow \\
\sum M_{c}=0.0>8 x 2-4 Y_{d}=0.0 & \gg Y_{d}=4 t \uparrow
\end{array}
$$

$$
\text { Check } \quad \sum F_{y}=8-4-4=0 \quad O k
$$

$$
>\text { For part a-d }
$$

$$
M_{d} \text { from right side }=-4 x 1=-4 m t
$$

$$
M_{d}=M_{1}(\text { Negative moment }=\text { Positive moment })
$$

$$
M_{1}=Y_{a} x 1.5 \gg Y_{a}=\frac{4}{1.5}=2.67 t \uparrow
$$

$$
\mathrm{Y}_{\mathrm{d}}=6.67 \mathrm{t} \uparrow
$$

$$
M_{d}=2.67 x 3-1.5 P
$$

$$
-4=2.66 x 3-1.5 P \ggg>P=8 t \uparrow
$$

Fig. 3.46.b

Chapter (4)

INTERNAL FORCES IN THE FRAME STRUCTURES

4.1. Introduction

In the frame structure system, the beam girders are connected to the columns to transfer the bending moment and the other components or members (floors and roof panels) are not connected to the columns (and called secondary members). Framing systems are the basic structure used in the majority of new residential construction to get larger spans to caver large area without inter columns as shown in Fig. 4.1. It may comprise of wood, steel or concrete members.

Fig. 4.1: Steel frame building

The difference between the ordinary building and frame structures is the connection between the column and beam. There are two types of connection between them as indicated below:-

1. Flexible Joint or Pin Joint

It is a hinge which can transfer forces only. In this case, the column and beam end moments are both equal to zero ($\mathrm{M}_{\mathrm{col}}=\mathrm{M}_{\text {beam }}=0$). This connection is constructed by separating the reinforcements of the columns and beams in the case of reinforced concrete building. This connection is illustrated in Fig. 4.2 and it is modeled in Fig. 4.3.

2. Rigid Joint

In this joint, bending moment can be transmitted through the connection. Also in a rigid connection, the end moments and rotations are equal $\left(\mathrm{M}_{\text {beam }}=\mathrm{M}_{\text {col }} \neq 0\right)$. This connection is constructed by inserting the reinforcements of the columns in the beams. This connection is illustrated in Fig. 4.2 and it is modeled in Fig. 4.3.

a) Connection in beam

b) Connection in frame

Fig. 4.2: Connection between reinforced concrete beam and column

a) Ordinary building

4.2. Statically Determinate System of the Frame

A statically determinate system is a system in which all the reactions of supports can be determined by means of equations of equilibrium ($\sum \mathrm{F}_{\mathrm{x}}, \sum \mathrm{F}_{\mathrm{y}}$ and $\sum \mathrm{M}$) and the internal forces also can be found by method of sections. A statically indeterminate system means that the reactions and internal forces cannot be analyzed by the application of the equations of static alone. The below equation is used to find the degree of indeterminacy in frame structures.
$I=(3 M+R)-3 J-n$

Where:-

I is the degree of indeterminacy

M is the number of members

R is the number of the reactions
J is the number of the joints
n is the number of the intermediate hinge

Examples: Calculate the degree of indeterminacy in the below frames:-

a) Frame\#1

c) Frame\#3

b) Frame\#2

d) Frame\#4

e) Frame\#5
f) Frame\#6

For $(a) \gg I=(3 x 3+3)-3 x 4-0=12-12=0$
For $(b) \gg I=(3 x 2+3)-3 x 3=9-9=0$
For $(c) \gg I=(3 x 3+4)-3 x 4-0=13-12=1$
For $(d) \gg I=(3 x 6+6)-3 x 7-3=24-21-3=0$
For $(e) \gg I=(3 x 6+4)-3 x 6-0=22-18=4$
For $(f) \gg I=(3 x 4+4)-3 x 4-0=13-12=1$

4.3. Solved Examples

Example (1)

For the given frame in Fig. 4.4, draw the normal force, shear force and bending moment diagrams.

Fig. 4.4.a
Solution
\rightarrow Finding the reactions
a) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \ggg \mathrm{X}_{\mathrm{a}}=0$
b) $\sum M_{a}=0 \ggg \ggg \gg 10 x 2-Y_{b} x 6=0$

$$
\therefore Y_{b}=\frac{20}{6}=3.33 t \uparrow
$$

c) $\sum M_{b}=0 \ggg \ggg \gg 10 x 4-Y_{a} x 6=0$

$$
\therefore Y_{a}=\frac{40}{6}=6.67 t \uparrow
$$

d) Check $\sum \mathrm{F}_{\mathrm{y}}=6.67+3.33-10=0 \ggg \ggg \gg$ ok
$>$ For drawing B.M.D
M_{1} from left side $=0 \quad \mathrm{M}_{2}$ from right side $=0$
M_{3} from left side $=6.67 \mathrm{x} 2=13.33 \mathrm{~m} . \mathrm{t}$

Fig. 4.4.b

Example (2)

For the given frame in Fig. 4.5, draw the normal force, shear force and bending moment diagrams.

Fig. 4.5.a

Solution

\rightarrow Finding the reactions
a) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=3 \mathrm{t} \rightarrow$
b) $\sum M_{a}=0 \ggg \ggg \gg 10 x 2-3 x 4-Y_{b} x 6=0$

$$
\therefore Y_{b}=\frac{8}{6}=1.33 t \uparrow
$$

c) $\sum M_{b}=0 \ggg \ggg \ggg 10 x 4+3 x 4-Y_{a} x 6=0$

$$
\therefore Y_{a}=\frac{52}{6}=8.67 t \uparrow
$$

d) Check $\sum \mathrm{F}_{\mathrm{y}}=8.67+1.33-10=0 \ggg \ggg \ggg$ ok
$>$ For drawing B.M.D
M_{1} from left side $=-3 \times 4=-12 m t \quad M_{2}$ from right side $=0$
M_{3} from left side $=-3 \times 4+8.67 \times 2=5.34 \mathrm{~m} . \mathrm{t}$

Fig. 4.5.b

Fig. 4.5.b

Example (3)

Draw the normal, shear force and bending moment diagrams for the given frame in Fig. 4.6.

Fig. 4.6.a

Solution

$>$ Finding the reactions
a) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=5 \mathrm{t} \leftarrow$
b) $\sum M_{a}=0 \ggg \ggg \gg 5 x 4+10 x 3-Y_{b} x 6=0$

$$
\therefore Y_{b}=\frac{50}{6}=8.33 t \uparrow
$$

c) $\sum M_{b}=0 \ggg \ggg \gg 10 x 3-5 x 4-Y_{a} x 6=0$

$$
\therefore Y_{a}=\frac{10}{6}=1.67 t \uparrow
$$

d) Check $\sum \mathrm{F}_{\mathrm{y}}=8.33+1.67-10=0 \ggg \ggg \ggg \mathrm{ok}$
$>$ For drawing B.M.D
M_{1} from left side $=5 \mathrm{x} 4=20 \mathrm{mt}$ M_{b} from right side $=0$
M_{2} from left side $=5 \mathrm{x} 4+1.67 \mathrm{x} 3=25 \mathrm{~m} . \mathrm{t}$

Fig. 4.6.b

B.M.D

Fig. 4.6.c

Example (4)

Fig. 4.7.a

Solution

$>$ Finding the reactions
a) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=6 \mathrm{t} \rightarrow$
b) $\sum M_{a}=0 \ggg \ggg \ggg>9+6 x 3-Y_{b} x 6=0$

$$
\therefore Y_{b}=\frac{45}{6}=7.5 t \uparrow
$$

c) $\sum M_{b}=0 \ggg \ggg \gg 9 x 3-6 x 3-Y_{a} x 6=0$

$$
\therefore Y_{a}=\frac{9}{6}=1.5 t \uparrow
$$

d) Check $\sum \mathrm{F}_{\mathrm{y}}=7.5+1.5-9=0 \ggg \ggg \gg$ ok
$>$ For drawing B.M.D
M_{1} from left side $=0$
M_{2} from right side $=-6 \times 3=-18 \mathrm{~m} . \mathrm{t}$

Fig. 4.7.b

B.M.D

Fig. 4.7.c

Example (5)

For the given frame in Fig. 4.8, draw the normal, shear force and bending moment diagrams.

Fig. 4.8.a
Solution
$>$ Finding the reactions
a) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=10 \mathrm{t} \leftarrow$
b) $\sum M_{a}=0 \ggg \ggg \gg 18 x 3+10 x 2-Y_{b} x 6=0$

$$
\therefore Y_{b}=\frac{74}{6}=12.33 t \uparrow
$$

c) $\sum M_{b}=0 \ggg \ggg \gg 18 x 3-10 x 2-Y_{a} x 6=0$

$$
\therefore Y_{a}=\frac{34}{6}=5.67 t \uparrow
$$

d) Check $\sum \mathrm{F}_{\mathrm{y}}=12.33+5.67-18=0 \ggg \ggg \gg$ ok
> For drawing B.M.D
M_{1} from left side $=10 \times 2=20 \mathrm{~m} . \mathrm{t}$
M_{2} from left side $=10 \times 4-10 \times 2=20 \mathrm{~m} . \mathrm{t}$

Fig. 4.8.b

Fig. 4.8.c
Example (5)

For the given frame in Fig. 4.9, draw the normal, shear force and bending moment diagrams.

Fig. 4.9.a

Solution

$>$ Finding the reactions
a) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=5 t \rightarrow$
b) $\sum M_{a}=0 \ggg \ggg \gg 16 x 4-5 x 2-Y_{b} x 8=0$

$$
\therefore Y_{b}=\frac{54}{8}=6.75 t \uparrow
$$

c) $\sum M_{b}=0 \ggg \ggg \gg 16 x 4+5 x 2-Y_{a} x 8=0$

$$
\therefore Y_{a}=\frac{74}{8}=9.25 t \uparrow
$$

d) Check $\sum \mathrm{F}_{\mathrm{y}}=6.75+9.25-16=0 \ggg \ggg \gg$ ok
$>$ For drawing B.M.D
M_{1} from left side $=-5 \times 4=-20$ m.t
M_{2} from left side $=-5 \times 2=-10 \mathrm{~m} . \mathrm{t}$
M_{3} from right side $=0$

Fig. 4.9.b
Example (6)
For the given frame in Fig. 4.10, draw the normal, shear force and bending moment diagrams.

Fig. 4.10.a
Solution
$>$ Finding the reactions
a) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=4 \mathrm{t} \leftarrow$
b) $\sum M_{a}=0 \ggg \ggg \ggg 9 x 3+6 x 2-4 x 2-3 x 1-2 x 3-Y_{b} x 6=0$

$$
\therefore Y_{b}=\frac{22}{6}=3.67 t \uparrow
$$

c) $\sum M_{b}=0 \ggg \ggg \gg 9 x 3-6 x 2+4 x 8+3 x 9-Y_{a} x 6=0$

$$
\therefore Y_{a}=\frac{74}{6}=12.33 t \uparrow
$$

d) Check $\sum \mathrm{F}_{\mathrm{y}}=12.33+3.67-9-3-4=0 \ggg \ggg \ggg$ ok
$>$ For drawing B.M.D
M_{1} from left side $=-6 \times 1=-6 \mathrm{~m} . \mathrm{t}$
M_{2} from left side $=-4 \times 2-3 \times 1=-11 \mathrm{~m} . \mathrm{t}$
M_{3} from equilibrium $=-6-11=-17 \mathrm{~m} . \mathrm{t}$
M_{4} from right side $=-4 \times 3=-12 \mathrm{mt}$
M_{5} from right side $=-12 \mathrm{mt}$

Fig. 4.10.b

Fig. 4.10.b

Fig. 4.10.c

Example (7)

For the given frame in Fig. 4.11, draw the normal, shear force and bending moment diagrams.

Fig. 4.11.a

Solution

$>$ Finding the reactions
a) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=6 \mathrm{t} \leftarrow$
b) $\sum M_{a}=0 \gg 12 x 2+12 x 6+10 x 4+3 x 2+3 x 4+5 x 6-Y_{b} x 8=0$

$$
\therefore Y_{b}=\frac{184}{8}=23 t \uparrow
$$

c) $\sum M_{b}=0 \gg 12 x 6+12 x 2+10 x 4-3 x 2-3 x 4+5 x 2-Y_{a} x 8=0$

$$
\therefore Y_{a}=\frac{128}{8}=16 t \uparrow
$$

d) Check $\sum \mathrm{F}_{\mathrm{y}}=12+12+10+5-16-23=0 \ggg \ggg \gg$ ok
$>$ For drawing B.M.D
M_{1} from left side $=6 \times 2=12 \mathrm{~m} \cdot \mathrm{t}$
M_{2} from left side $=6 \times 4-3 \times 2=18 \mathrm{~m} . \mathrm{t}$
M_{3} from left side $=6 \times 6-3 \times 4-3 \times 2=18 \mathrm{~m} . \mathrm{t}$
M_{4} from left side $=-12 \times 2-3 \times 2-3 \times 4+6 \times 6+16 \times 4=58 \mathrm{~m} . t$
M_{5} from left side $=-12 \times 2-10 \times 4-12 \times 6-3 \times 2-3 \times 4+6 \times 6+16 \times 8=10 \mathrm{~m} . \mathrm{t}$
M_{6} from right side $=0$
M_{7} from left side $=-5 \times 2=-10 \mathrm{~m} . \mathrm{t}$
M_{8} from equilibrium $=10 \mathrm{~m} . \mathrm{t}$

Fig. 4.11.b

Fig. 4.11.c

Example (8)
For the given frame in Fig. 4.12, draw the normal, shear force and bending moment diagrams.

Fig. 4.12.a

Solution

$>$ Finding the reactions
a) $\sum M_{a}=0 \ggg \ggg \gg 10 x 2+10 x 6+6 x 2-Y_{b} x 8=0$

$$
\therefore Y_{b}=\frac{92}{8}=11.5 t \uparrow
$$

b) $\sum M_{b}=0 \ggg \ggg \gg 10 x 2+10 x 6-6 x 2-Y_{a} x 8=0$

$$
\therefore Y_{a}=\frac{68}{8}=8.5 t \uparrow
$$

c) Check $\sum \mathrm{F}_{\mathrm{y}}=8.5+11.5-10-10=0 \ggg \ggg \gg$ ok
d) $\sum M_{c}$ for the left side $=0$

$$
10 x 2+6 x 2-8.5 x 4-4 x_{a}=0 \quad \ggg>x_{a}=0.5 t \rightarrow
$$

e) $\sum M_{c}$ for the right side $=0$

$$
10 x 2-11.5 x 4+4 x_{b}=0 \quad \ggg>x_{b}=6.5 t \leftarrow
$$

f) check $\sum \mathrm{F}_{\mathrm{x}}=6+0.5-6.5=0 \ggg \ggg \gg$ ok

$>$ For drawing B.M.D

M_{1} from left side $=-6 \times 2-0.5 \times 4=-14 \mathrm{~m} . \mathrm{t}$
M_{2} from right side $=-6.5 \mathrm{x} 4=-26 \mathrm{~m} . \mathrm{t}$
M_{3} from equilibrium $=-0.5 \times 2=-1 \mathrm{~m} . \mathrm{t}$

Fig. 4.12.b

Fig. 4.12.c

Example (9)

Draw the normal, shear force and bending moment diagrams for the shown frame in Fig. 4.13.

Fig. 4.13.a
Solution
> Finding the Reaction
a) $\sum \mathrm{M}_{\mathrm{a}}=0.0$

$$
\begin{gathered}
=16 \times 4+6 \times 9-10 \times 2+2 \times 6-2 \times 0.5-5 \times 3-\mathrm{Y}_{\mathrm{b}} \times 8=0.0 \\
\mathrm{Y}_{\mathrm{b}}=11.75 \mathrm{t} \uparrow
\end{gathered}
$$

b) $\sum \mathrm{M}_{\mathrm{b}}=0.0$

$$
\begin{gathered}
=16 \times 4+2 \times 8.5+10 \times 10-2 \times 6+6 \times 1+5 \times 3-Y_{a} \times 8=0.0 \\
Y_{a}=22.25 t \uparrow
\end{gathered}
$$

c) Check $\sum \mathrm{F}_{\mathrm{y}}=-11.75-22.25+16+2+10+6=0.0 \quad \ldots . \mathrm{OK}$
d) $\sum \mathrm{M}_{\mathrm{e}}=0.0$ for left part

$$
=5 \times 3-\mathrm{X}_{\mathrm{b}} \times 6=0.0 \quad \mathrm{X}_{\mathrm{b}}=2.5 \mathrm{t} \rightarrow
$$

e) $\sum \mathrm{M}_{\mathrm{e}}=0.0$ for right part

$$
\begin{aligned}
& =16 \times 4+10 \times 10+2 \times 8.5-6 \times 1-22.25 \times 8+X_{a} \times 6=0.0 \\
& X_{a}=0.5 \mathrm{t} \rightarrow
\end{aligned}
$$

$>$ For drawing B.M.D
M_{1} from left side $=-0.5 \times 4=-2 \mathrm{~m} . \mathrm{t}$
M_{2} from left side $=-2 \mathrm{x} 0.5=-1 \mathrm{~m} . \mathrm{t}$
M_{3} from equilibrium $=2+1=-3 \mathrm{~m} . \mathrm{t}$
M_{4} from left side $=-0.5 \times 6-2 \times 0.5=-4 \mathrm{~m} . \mathrm{t}$
M_{5} from left side $=-10 \times 2=-20 \mathrm{~m} . \mathrm{t}$
M_{6} from equilibrium $=4+20=-24 \mathrm{~m} . \mathrm{t}$
M_{7} from right side $=2.5 \times 3=7.5 \mathrm{~m} . \mathrm{t}$
$\mathrm{M}_{8}=0$
M_{9} from right side $=-6 \times 1=-6 \mathrm{~m} . \mathrm{t}$
M_{10} from equilibrium $=0+6=-6 \mathrm{~m} . \mathrm{t}$

N.F.D

S.F.D

B.M.D

Fig. 4.13.b

Example (10)

Draw the normal, shear force and bending moment diagrams for the shown frame in Fig. 4.14.

Fig. 4.14.a
Solution
> Finding the Reaction
a) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=1 \mathrm{t} \leftarrow$
b) $\sum \mathrm{M}_{\mathrm{a}}=4.5 \times 1.5+4 \times 5+4 \times 1-3 \times 4-1 \times 1.5-\mathrm{Y}_{\mathrm{b}} \times 7=0$

$$
\mathrm{Y}_{\mathrm{b}}=2.46 \mathrm{t} \uparrow
$$

c) $\sum \mathrm{M}_{\mathrm{b}}=3 \times 2.5+4 \times 2+6 \times 7+4.5 \times 5.5+4 \times 0.5-\mathrm{Y}_{\mathrm{a}} \times 7=0.0$

$$
\mathrm{Y}_{\mathrm{a}}=12.04 \mathrm{t} \uparrow
$$

d) Check $\sum \mathrm{F}_{\mathrm{y}}=-12.04-2.46+6+4+4.5=0.0 \quad \ldots$. OK
$>$ For drawing B.M.D
M_{1} from left side $=-4 \times 1=-4 \mathrm{~m} . \mathrm{t} \quad \mathrm{M}_{2}$ from left side $=-4 \times 4=-12 \mathrm{~m} . \mathrm{t}$
M_{3} from right side $=-1 \times 2.5-4 \times 2+2.46 \times 4=0.66 \mathrm{~m} . t$
M_{4} from right side $=-1 \times 2.5=-2.5 \mathrm{~m} . \mathrm{t}$

Fig. 4.14.b

B.M.D

Fig. 4.14.c

Example (11)

Draw the normal, shear force and bending moment diagrams for the shown frame in Fig. 4.15.

Fig. 4.15.a

Solution

$$
\begin{array}{lc}
\sum F_{x}=0.0 & X_{a}=6.0 t \leftarrow \\
\sum M_{a}=0.0 & 4 x 2+2 x 5+10 x 1+6 x 3+3-6 x 2+6 Y_{b}=0.0 \\
Y_{b}=6.27 t \uparrow \\
\sum M_{b}=0.0 & 6 x 3+10 x 5-2 x 3-4 x 0-3-6 Y_{a}=0.0 \\
& Y_{a}=9.83 t \uparrow
\end{array}
$$

Fig. 4.15.b
$>$ For drawing B.M.D
M_{1} from left side $=-4 \times 2=-8 \mathrm{~m} . \mathrm{t} \quad \mathrm{M}_{2}$ from right side $=-10 \times 1=-10 \mathrm{~m} . \mathrm{t}$
M_{3} from equilibrium $=-10 \mathrm{~m} . \mathrm{t}$
M_{4} from right side $=-1 \times 10-2 \times 1=-12$ m.t
M_{5} from equilibrium $=12-8=4 \mathrm{~m} . \mathrm{t}$
M_{6} from right side $=-6 \times 2=-12 \mathrm{~m} . \mathrm{t}$
M_{7} from right side $=-3 \mathrm{~m} . \mathrm{t}$
M_{8} from equilibrium $=-12-3=-18 \mathrm{~m} . \mathrm{t}$

N.F.D

S.F.D

B.M.D

Fig. 4.15.c

Example (12cas\#1)

For the given frame in Fig. 4.16, draw the normal, shear force and bending moment diagrams.

Fig. 4.16.a

Solution

$>$ Finding the reactions
> For part b-c
e) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{c}}=4$
f) $\sum M_{c}=36 x 6-Y_{b} x 12=0 \therefore Y_{b}=18 t \uparrow$
g) $\sum M_{b}=36 x 6-Y_{a} x 12=0 \therefore Y_{a}=18 t \uparrow$

Check $\sum \mathrm{F}_{\mathrm{y}}=36-18-18=0 \ggg \ggg \gg$ ok
\rightarrow For part c-a
h) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=4 \rightarrow$
i) $\sum M_{a}=0 \ggg \ggg \ggg 6 x 3-4 x 9-M_{a}=0$
$\therefore M_{b}=18 \mathrm{mt}$ (
Check $\sum \mathrm{F}_{\mathrm{y}}=18+6-Y_{a}=0 \ggg \ggg \gg Y_{a}=24 \mathrm{t} \uparrow$

Fig. 4.16.b

$>$ For the BMD
$M_{1}=18-4 x 6=-6 m t$
$M_{2}=6 x 3=18 m t$
M_{3} from the equlibrium $=18-6=12 m t$

Fig. 4.16.c

For the given frame in Fig. 4.16.d, draw the normal, shear force and bending moment diagrams.

Fig. 4.16.d

Fig. 4.16.e

Example (12cas\#3)

For the given frame in Fig. 4.16.f, draw the normal, shear force and bending moment diagrams.

Fig. 4.16.f

Fig. 4.16.g

Example (13)

For the given frame in Fig. 4.17.a, draw the normal, shear force and bending moment diagrams.

Fig. 4.17.a

Solution

> Finding the reactions
> For part $a-c$
j) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{b}}=0$
k) $\sum M_{a}=0 \ggg \ggg \gg 18 x 3-3 x 1.5-Y_{b} x 6=0 \therefore Y_{b}=8.25 t \uparrow$
l) $\sum M_{b}=0 \ggg \ggg \gg 18 x 3+3 x 7.5-Y_{a} x 6=0 \therefore Y_{a}=12.75 t \uparrow$

$$
\text { Check } \sum \mathrm{F}_{\mathrm{y}}=12.75+8.25-18-3=0 \ggg \ggg \gg \text { ok }
$$

14.25t

Fig. 4.17.b
$>$ For part c-b
m) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{c}}=3 \rightarrow$
n) $\sum M_{a}=0 \ggg \ggg \gg 8.25 x 2+3 x 8+6 x 1-M_{b}=0$
$\left.\therefore M_{b}=46.5 m t\right)$
Check $\sum \mathrm{F}_{\mathrm{y}}=8.25+6-Y_{b}=0 \ggg \ggg \gg Y_{b}=14.25 \mathrm{t}$

Fig. 4.17.c

Example (14)

For the given frame in Fig. 4.18.a, draw the normal, shear force and bending moment diagrams.

Fig. 4.18.a

Solution

$>$ Finding the reactions
a) $\sum \mathrm{M}_{\mathrm{a}}=-4 \mathrm{x} 1+4 \mathrm{x} 1+12 \mathrm{x} 5-2 \mathrm{x} 4+6 \mathrm{x} 10+2 \mathrm{X}_{\mathrm{b}}-8 \mathrm{Y}_{\mathrm{b}}=0$

$$
\begin{equation*}
\therefore 112+2 \mathrm{X}_{\mathrm{b}}-8 \mathrm{Y}_{\mathrm{b}}=0 \tag{1}
\end{equation*}
$$

b) $\sum \mathrm{M}_{\mathrm{b}}=-6 \mathrm{x} 2+2 \mathrm{x} 6+12 \mathrm{x} 3+4 \mathrm{x} 7+4 \mathrm{x} 9-2 \mathrm{X}_{\mathrm{a}}-8 \mathrm{Y}_{\mathrm{a}}=0$

$$
\begin{equation*}
\therefore 50-\mathrm{X}_{\mathrm{a}}-4 \mathrm{Y}_{\mathrm{a}}=0 \tag{2}
\end{equation*}
$$

c) $\sum M_{c}$ for the left side $=0$

$$
4 \mathrm{x} 1+4 \mathrm{x} 3+4 \mathrm{x}_{\mathrm{a}}-2 \mathrm{Y}_{\mathrm{a}}=0 \quad \therefore 16+4 \mathrm{x}_{\mathrm{a}}-2 \mathrm{Y}_{\mathrm{a}}=0
$$

d) $\sum \mathrm{M}_{\mathrm{c}}$ for the right side $=0$

$$
\begin{equation*}
12 \mathrm{x} 3+6 \mathrm{x} 8+6 \mathrm{x}_{\mathrm{b}}-6 \mathrm{Y}_{\mathrm{b}}=0 \quad \therefore 84+6 \mathrm{x}_{\mathrm{b}}-6 \mathrm{Y}_{\mathrm{b}}=0 \tag{4}
\end{equation*}
$$

By solving the four equations

$$
\mathrm{X}_{\mathrm{a}}=2 \rightarrow \quad \mathrm{Y}_{\mathrm{a}}=12 \uparrow \quad \mathrm{X}_{\mathrm{b}}=0 \quad \mathrm{Y}_{\mathrm{b}}=14 \uparrow
$$

e) check $\sum \mathrm{F}_{\mathrm{x}}=2-2=0 \ggg \ggg \gg \mathrm{ok}$
f) Check $\sum \mathrm{F}_{\mathrm{y}}=4+4+12+6-14-12=0 \ggg \ggg \ggg$ ok

Fig. 4.18.b

Example (15)

For the given frame in Fig. 4.19.a, draw the normal, shear force and bending moment diagrams.

Solution

$>$ Finding the reactions
a) $\sum \mathrm{M}_{\mathrm{a}}=0$

$$
\begin{gather*}
2 \mathrm{x} 4-6 \mathrm{x} 2+24 \mathrm{x} 2+84 \mathrm{x} 11+20 \times 20-3 \times 4-2 \mathrm{X}_{\mathrm{b}}-18 \mathrm{Y}_{\mathrm{b}}=0 \\
\therefore 1356-2 \mathrm{X}_{\mathrm{b}}-18 \mathrm{Y}_{\mathrm{b}}=0 \ldots \ldots \text { (1) } \tag{1}
\end{gather*}
$$

b) $\sum \mathrm{M}_{\mathrm{b}}=3 \mathrm{x} 2-20 \mathrm{x} 2+84 \mathrm{x} 7+24 \mathrm{x} 16+6 \mathrm{x} 20-2 \mathrm{x} 2+2 \mathrm{X}_{\mathrm{a}}-18 \mathrm{Y}_{\mathrm{a}}=$ 0

$$
\begin{equation*}
\therefore 1054+2 \mathrm{X}_{\mathrm{a}}-18 \mathrm{Y}_{\mathrm{a}}=0 \tag{2}
\end{equation*}
$$

c) $\sum M_{c}$ for the left side $=0$
$24 \mathrm{x} 2+6 \mathrm{x} 6+2 \mathrm{x} 2+6 \mathrm{x}_{\mathrm{a}}-4 \mathrm{Y}_{\mathrm{a}}=0$

$$
\begin{equation*}
\therefore 88+6 \mathrm{x}_{\mathrm{a}}-4 \mathrm{Y}_{\mathrm{a}}=0 \tag{3}
\end{equation*}
$$

d) $\sum M_{c}$ for the right side $=0$

$$
\begin{gather*}
84 \mathrm{x} 7+20 \mathrm{x} 16+3 \mathrm{x} 2+4 \mathrm{x}_{\mathrm{b}}-14 \mathrm{Y}_{\mathrm{b}}=0 \\
\therefore 914+4 \mathrm{x}_{\mathrm{b}}-14 \mathrm{Y}_{\mathrm{b}}=0 \ldots \ldots(4) \tag{4}
\end{gather*}
$$

By solving the four equations

$$
X_{a}=26.32 \rightarrow \quad Y_{a}=61.48 \uparrow \quad X_{b}=25.32 \leftarrow \quad Y_{b}=72.52 \uparrow
$$

e) check $\sum \mathrm{F}_{\mathrm{x}}=26.32+2-3-25.32=0 \ggg \ggg \ggg \mathrm{ok}$
f) Check $\sum \mathrm{F}_{\mathrm{y}}=20+24+84-61.48-72.52=0 \ggg \ggg \ggg$ ok

Fig. 4.19.a

Fig. 4.19.b
Example (16)
For the given frame in Fig. 4.20.a, draw the normal, shear force and bending moment diagrams.

Fig. 4.20.a

Solution

$>$ Finding the reactions
The hinged support at right side and the intermediate hinge are link support and it was considered as roller support as presented in Fig. 4.20.b

- For part c-b
$\sum \mathrm{F}_{\mathrm{x}}=2-X_{c}=0 \ggg>X_{c}=2 \mathrm{t} \leftarrow$
a) $\sum \mathrm{M}_{\mathrm{c}}=36 \mathrm{x} 4.5+2 \mathrm{x} 10.5-9 \mathrm{Y}_{\mathrm{b}}=0 \quad \therefore \mathrm{Y}_{\mathrm{b}}=20.33 \uparrow$
b) $\sum \mathrm{M}_{\mathrm{b}}=36 \mathrm{x} 4.5-2 \mathrm{x} 1.5-9 \mathrm{Y}_{\mathrm{c}}=0 \quad \therefore \mathrm{Y}_{\mathrm{c}}=17.67 \mathrm{t} \uparrow$
c) Check $\sum \mathrm{F}_{\mathrm{y}}=36+2-17.67-20.33=0 \ggg \ggg \gg$ ok

For part a-c
d) $\sum \mathrm{F}_{\mathrm{y}}=0 \ggg>Y_{a}=17.67 \mathrm{t} \uparrow \quad \sum \mathrm{F}_{\mathrm{x}}=0 \ggg>X_{a}=2 \mathrm{t} \leftarrow$
e) $\sum \mathrm{M}_{\mathrm{a}}=0 \ggg>2 \mathrm{x} 6-M_{a}=0 \gg M_{a}=12 m t$

Fig. 4.20.b

Fig. 4.20.c

Example (17)
For the given frame in Fig. 4.21.a, draw the normal, shear force and bending moment diagrams.

Fig. 4.21.a

Solution

* Finding the reactions
\rightarrow For part d-c
e) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{c}}=0 \rightarrow$
f) $\sum M_{c}=0 \ggg \ggg \ggg \therefore Y_{d}=6 \uparrow$
g) $\sum M_{d}=0 \ggg \ggg \ggg \therefore Y_{c}=6 \uparrow$
\rightarrow For part $a-b$
a) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{b}}=3 \mathrm{t} \leftarrow$
b) $\sum M_{a}=0 \ggg \ggg \ggg>32+12 x 6+36 x 6+4 x 13+6 x 14-3 x 4-$ $Y_{b} x 12=0$

$$
\therefore Y_{b}=\frac{418}{12}=34.833 t \uparrow
$$

c) $\sum M_{b}=0 \ggg \ggg \ggg>36 x 6+12 x 6+3 x 2-4 x 1-6 x 2-Y_{a} x 12=0$

$$
\therefore Y_{a}=\frac{287}{12}=23.17 t \uparrow
$$

Check $\sum \mathrm{F}_{\mathrm{y}}=23.17+34.833+6-36-12-4-12=0 \ggg>$ ok
For drawing B.M.D
M_{1} from left side $=0 \quad \mathrm{M}_{2}$ from left side $=-3 \times 2=-6 \mathrm{~m} . \mathrm{t}$
M_{3} from right side $=-3 \times 2-18 \times 3+23.17 \times 6=79 \mathrm{~m} . \mathrm{t}$
M_{4} from right side $=-4 \times 1-6 \times 2=16 \mathrm{~m} . \mathrm{t}$

B.M.D

Fig. 4.21.b

Example (18)

For the given frame in Fig. 4.22.a, draw the normal, shear force and bending moment diagrams.

Fig. 4.22.a

* Finding the reactions

\rightarrow For part a-c
a) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{c}}=6.5 \mathrm{t} \leftarrow$
b) $\sum M_{a}=0 \ggg \ggg \gg 1.5 x 2+5 x 6+10 x 2-6.5 x 6-Y_{c} x 4=0$

$$
\therefore Y_{c}=\frac{14}{4}=3.5 t \uparrow
$$

c) $\sum M_{c}=0 \ggg \ggg \ggg 1.5 x 4+10 x 2-Y_{a} x 4=0 \therefore Y_{a}=\frac{26}{4}=6.5 t \uparrow$
d) Check $\sum \mathrm{F}_{\mathrm{y}}=10-6.5-3.5=0 \ggg \ggg \gg$ ok
\rightarrow For part $c-b$
a) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{b}}=3.5 \mathrm{t} \leftarrow$
b) $\sum F_{y}=0 \ggg \ggg \ggg 10+10-3.5-Y_{b}=0 \therefore Y_{b}=23.5 t \uparrow$
c) $\sum M_{b}=0 \ggg \ggg \ggg 10 x 2+10 x 6+3.5 x 8+3 x 1.5-6.5 x 6-M_{b}=0$

$$
\left.\therefore M_{b}=73.5 \mathrm{mt}\right)
$$

Fig. 4.22.b

For part d-e-b
$\sum \mathrm{M}_{\mathrm{d}}=0.0$
$73.5+3.5 \times 6+3 \times 4.5-3 \mathrm{~F}_{1 \mathrm{x}}=0$
$\mathrm{F}_{1 \mathrm{x}}=36 \mathrm{t}$
$\mathrm{F}_{1} \mathrm{y}=36 \times 3 / 4=27 \mathrm{t}$

$\mathrm{F}_{1}=45 \mathrm{t}$ (compression)

Fig. 4.10.c

N.F.D

Fig. 4.22.b

Example (18)

For the given frame in Fig. 4.22.a, draw the normal, shear force and bending moment diagrams.

Fig. 4.23.a

$>$ Finding the reactions
f) $\sum M_{a}=0 \ggg \ggg \ggg-6 x 2+12 x 2+10 x 6-4 x 4-Y_{b} x 4=0$

$$
\therefore Y_{b}=\frac{56}{4}=14 t \uparrow
$$

g) $\sum M_{b}=0 \ggg \ggg \ggg 6 x 6+12 x 2+4 x 4-10 x 2-Y_{a} x 6=0$

$$
\therefore Y_{a}=\frac{56}{4}=14 t \uparrow
$$

h) Check $\sum \mathrm{F}_{\mathrm{y}}=6+12+10-14-14=0 \ggg \ggg \ggg$ ok
i) $\sum M_{c}$ for the left side $=0$

$$
6 x 4+6 x 1-14 x 2-4 x_{a}=0 \quad \ggg>x_{a}=0.5 t \leftarrow
$$

j) $\sum M_{c}$ for the right side $=0$

$$
6 x 1+10 x 4+4 x_{b}=0 \ggg>x_{b}=4.5 t \rightarrow
$$

k) check $\sum \mathrm{F}_{\mathrm{x}}=0.5+4-4.5=0 \ggg \ggg \ggg \mathrm{ok}$

Fig. 4.23.b
$>$ For part e-f-a
$\sum \mathrm{M}_{\mathrm{e}}=0.0 \quad 0.5 \times 4=\mathrm{F}_{1} \mathrm{X} \times 2 \mathrm{~F}_{1} \mathrm{X}=1.0 \mathrm{t} \quad \mathrm{F}_{1} \mathrm{y}=1.0 \mathrm{t}$

$$
\mathrm{F}_{1}=1 \sqrt{2} \mathrm{t} \text { (compression) }
$$

$>$ For part 2-g-h
$\sum F_{y}=\mathbf{0 . 0}$
\square

$F_{2} y=10 t$
$\mathrm{F}_{2}=10 \sqrt{2} \mathrm{t}$ (compression)
$\sum F_{x}=\mathbf{0 . 0}$

$$
4-10=\mathrm{F}_{1} \quad \mathrm{~F}_{1}=6 \mathrm{t} \leftarrow \text { (Tension) }
$$

$>$ For drawing B.M.D
M_{f} from left side $=-0.5 \times 2=-1$ m.t
M_{1} for the cantilever from left side $=-6 x 2=-12 m \cdot t$
M_{1} for beam from equilibrium $=-12 \mathrm{~m} . \mathrm{t} \quad \mathrm{M}_{\mathrm{h}}$ from right side $=4.5 \times 2=9 \mathrm{mt}$
M_{2} from right side $=4.5 \times 4-10 \times 2=-2 \mathrm{~m} . \mathrm{t}$

Fig. 4.23.c

Fig.
N.F.D
4.23.d

Example (19)

For the given frame in Fig. 4.24.a, draw the normal, shear force and bending moment diagrams.

b) $\sum M_{b} 10.5 x 3+3 x 4-6 x 2-3.5 x 1-Y_{a} x 6=0$
$\therefore Y_{a}=$ $4.67 t \uparrow$

Fig. 4.24.b

Example (20)
For the
Fig. 4.25, shear force moment

Fig. 4.25.a
Solution

Fig. 4.25.b
$>$ Finding the reactions

$$
\sum M_{a}=-3 x 3-6 x 1.5+6 x 1.5+6 x 4.5+8 x 9-Y_{b} x 9=0
$$

$$
\therefore Y_{b}=10 t \uparrow
$$

$$
\sum M_{b}=3 x 12+6 x 10.5+6 x 7.5+6 x 4.5-Y_{a} x 9=0
$$

$$
\therefore Y_{a}=19 t \uparrow
$$

$\sum M_{c}$ for the left part $=3 x 6+6 x 4.5+6 x 1.5-19 x 3-x_{a} x 4=0$

$$
\therefore x_{a}=0.75 t \rightarrow
$$

S.F.D

N.F.D
$\sum M_{c}$ for the right part $=6 x 1.5+8 x 6-10 x 6+x_{b} x 4=0$

$$
\therefore x_{b}=0.75 t \leftarrow
$$

Example (21)

For the given frame in Fig. 4.26.a, draw the normal, shear force and bending moment diagrams.

Fig. 4.26.a

Solution

$>$ Finding the reactions
$\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=4 \mathrm{t} \leftarrow$
$\sum M_{a}=20 x 1.5+20 x 4.5+18 x 3+4 x 5-Y_{b} x 6=0$
$\therefore Y_{b}=32.33 t \uparrow$
$\sum M_{b}=20 x 1.5+20 x 4.5+18 x 3-4 x 5-Y_{a} x 6=0$
$\therefore Y_{a}=25.67 t \uparrow$
Check $\sum \mathrm{F}_{\mathrm{y}}=20+20+18-32.33-25.67=0 \ggg>$ ok
$>$ To finding the internal forces

The structures must be separate into two parts (see Fig. 4. 26.b) as below For part c-e-d

$$
\sum \mathrm{M}_{\mathrm{c}}=20 \mathrm{x} 1.5+20 \mathrm{x} 4.5+4 \mathrm{x} 3-6 \mathrm{Y}_{\mathrm{d}}=0 \quad \therefore \mathrm{Y}_{\mathrm{d}}=22 \mathrm{t} \uparrow
$$

$$
\sum \mathrm{M}_{\mathrm{d}}=20 \mathrm{x} 1.5+20 \mathrm{x} 4.5-4 \mathrm{x} 3-6 \mathrm{Y}_{\mathrm{c}}=0 \quad \therefore \mathrm{Y}_{\mathrm{c}}=18 \mathrm{t} \uparrow
$$

$$
\sum \mathrm{M}_{\mathrm{e}} \text { for the left side }=20 \times 1.5-18 \times 3-3 \mathrm{X}_{\mathrm{c}}=0 \quad \therefore \mathrm{X}_{\mathrm{c}}=8 \mathrm{t} \rightarrow
$$

$$
\sum \mathrm{M}_{\mathrm{e}} \text { for the right side }=20 \mathrm{x} 1.5-22 \mathrm{x} 3-3 \mathrm{X}_{\mathrm{d}}=0 \therefore \mathrm{X}_{\mathrm{d}}=12 \mathrm{t} \leftarrow
$$

For part $c-a-b-d \quad$ This part is equilibrium

Fig. 4. 26.b

Fig. 4. 26.c
Example (22)
For the given frame in Fig. 4.27, draw the normal, shear force and bending moment diagrams.

Fig. 4.27.a
Solution
$>$ Finding the reactions
b. $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=6 \mathrm{t} \leftarrow$
c) $\sum M_{a}=24 x 6+8 x 6-6 x 4-Y_{b} x 12=0 \quad \therefore Y_{b}=14 t \uparrow$

$$
\sum M_{b}=24 x 6+8 x 6+6 x 4-Y_{a} x 12=0 \quad \therefore Y_{a}=18 t \uparrow
$$

b. Finding the internal forces at the intermediate hinges as shown in Fig. 4.27.b
$\sum \mathrm{M}_{\mathrm{e}}=0.0$ for right part $=12 \times 1.5+8 \times 3+12 \times 4.5-\mathrm{Y}_{\mathrm{c}} \times 6=0.0 \quad \mathrm{Y}_{\mathrm{c}}=16.0 \mathrm{t} \uparrow$
$\sum \mathbf{M}_{\mathbf{d}}=12 \times 1.5-6 \times 4-14 \times 6-\mathrm{X}_{\mathrm{c}} \times 4+16 \times 3-12 \times 1.5=0.0 \quad \mathrm{X}_{\mathrm{c}}=15.0 \mathrm{t} \leftarrow$
$\sum \mathbf{M}_{\mathbf{c}}=12 \times 1.5+12 \times 4.5+8 \times 3-14 \times 9+\mathrm{X}_{\mathrm{d}} \times 4-\mathrm{Y}_{\mathrm{d}} \times 3=0.0$
$-30+\mathrm{X}_{\mathrm{d}} \times 4-\mathrm{Y}_{\mathrm{d}} \times 3=0.0$
$\sum \mathbf{M}_{\mathrm{e}}=14 \times 3-\mathrm{Y}_{\mathrm{d}} \times 3-\mathrm{X}_{\mathrm{d}} \times 4=0.0$
By Solving (1), (2) $12-\mathrm{Y}_{\mathrm{d}} \times 6=0.0 \quad \mathrm{Y}_{\mathrm{d}}=2.0 \mathrm{t} \uparrow \quad \mathrm{X}_{\mathrm{d}}=9.0 \mathrm{t} \rightarrow$

Fig. 4.27.b

Fig. 4. 27.b

Example (23)

For the given frame in Fig. 4.28.a, draw the normal, shear force and bending moment diagrams.

Solution

$>$ For part d-e-f
$\sum \mathrm{M}_{\mathrm{d}}=10 \mathrm{x} 4+16 \mathrm{x} 4-8 \mathrm{Y}_{\mathrm{e}}=0 \quad \therefore \mathrm{Y}_{\mathrm{e}}=13 \mathrm{t} \uparrow$
$\sum \mathrm{M}_{\mathrm{e}}=16 \mathrm{x} 4-10 \mathrm{x} 4-8 \mathrm{Y}_{\mathrm{d}}=0 \quad \therefore \mathrm{Y}_{\mathrm{d}}=3 \mathrm{t} \uparrow$
$\sum \mathrm{M}_{\mathrm{f}}$ for the left side $=8 \mathrm{x} 2-3 \mathrm{x} 4-4 \mathrm{X}_{\mathrm{d}}=0 \quad \therefore \mathrm{X}_{\mathrm{d}}=1 \mathrm{t} \leftarrow$ $\sum \mathrm{M}_{\mathrm{f}}$ for the right side $=8 \mathrm{x} 2-13 \mathrm{x} 4-4 \mathrm{X}_{\mathrm{e}}=0 \therefore \mathrm{X}_{\mathrm{e}}=9 \mathrm{t} \leftarrow$ Check $\sum \mathrm{F}_{\mathrm{y}}=16-13-3=0 \ggg>$ ok Check $\sum \mathrm{F}_{\mathrm{x}}=10-13-3=0 \ggg>\mathrm{ok}$
$>$ For part $a-c-b$

$$
\begin{aligned}
& \sum \mathrm{M}_{\mathrm{a}}=24 \mathrm{x} 4+13 \mathrm{x} 8+(1+9) \mathrm{x} 6-8 \mathrm{Y}_{\mathrm{b}}=0 \quad \therefore \mathrm{Y}_{\mathrm{b}}=32.5 \mathrm{t} \uparrow \\
& \sum \mathrm{M}_{\mathrm{b}}=24 \mathrm{x} 4+3 \mathrm{x} 8-(1+9) \mathrm{x} 6-8 \mathrm{Y}_{\mathrm{a}}=0 \quad \therefore \mathrm{Y}_{\mathrm{a}}=7.5 \mathrm{t} \uparrow \\
& \sum \mathrm{M}_{\mathrm{c}} \text { for the left side }=12 \mathrm{x} 2+3 \mathrm{x} 4-1 \mathrm{x} 2-7.5 \mathrm{x} 4-4 \mathrm{X}_{\mathrm{a}}=0
\end{aligned}
$$

$$
\therefore \mathrm{X}_{\mathrm{a}}=1 \mathrm{t} \leftarrow
$$

$$
\sum \mathrm{M}_{\mathrm{f}} \text { for the right side }=12 \mathrm{x} 2+13 \mathrm{x} 4+9 \mathrm{x} 2-32.5 \mathrm{x} 4-4 \mathrm{X}_{\mathrm{b}}=0
$$

$$
\therefore \mathrm{X}_{\mathrm{b}}=9 \mathrm{t} \leftarrow
$$

Check $\sum \mathrm{F}_{\mathrm{y}}=24+13+3-7.5-32.5=0 \ggg>$ ok Check $\sum \mathrm{F}_{\mathrm{x}}=1-1-9+9=0 \ggg>$ ok

Fig. 4.28.a

Fig. 4.28.b

Fig. 4.28

Example (24)

For the given frame in Fig. 4.29.a, draw the normal, shear force and bending moment diagrams.

Fig. 4.29.a

Solution

$>$ Finding the reactions

$$
\begin{aligned}
& \sum \mathrm{F}_{\mathrm{x}}=\mathrm{X}_{a}-4=0 \ggg>\mathrm{X}_{a}=4 \mathrm{t} \rightarrow \\
& \sum \mathrm{M}_{\mathrm{a}}=10 \mathrm{x} 2.5+15 \mathrm{x} 7.5+10 \mathrm{x} 7.5-4 \mathrm{x} 10-10 \mathrm{Y}_{\mathrm{b}}=0 \therefore \mathrm{Y}_{\mathrm{b}}=17.25 \mathrm{t} \uparrow \\
& \sum \mathrm{M}_{\mathrm{b}}=10 \mathrm{x} 2.5+15 \mathrm{x} 2.5+10 \mathrm{x} 7.5+4 \mathrm{x} 10-10 \mathrm{Y}_{\mathrm{a}}=0 \quad \therefore \mathrm{Y}_{\mathrm{a}}=17.75 \mathrm{t} \uparrow \\
& \quad \text { Check } \sum \mathrm{F}_{\mathrm{y}}=17.75+17.25-10-10-15=0 \ggg \mathrm{ok} \\
& >\text { For part c-e-d } \\
& \hline 233 \\
& \text { Ass. Pr. Eltaly, B. }
\end{aligned}
$$

$$
\begin{aligned}
& \sum \mathrm{M}_{\mathrm{c}}=10 \times 2.5-4 \mathrm{x} 3-5 \mathrm{Y}_{\mathrm{d}}=0 \quad \therefore \mathrm{Y}_{\mathrm{b}}=2.6 \mathrm{t} \uparrow \\
& \sum \mathrm{M}_{\mathrm{d}}=10 \times 2.5+4 \mathrm{x} 3-5 \mathrm{Y}_{\mathrm{c}}=0 \quad \therefore \mathrm{Y}_{\mathrm{c}}=7.4 \mathrm{t} \uparrow \\
& \sum \mathrm{M}_{\mathrm{e}} \text { for the left side }=5 \times 1.25-7.4 \times 2.5-3 \mathrm{X}_{\mathrm{c}}=0 \therefore \mathrm{X}_{\mathrm{c}}=4.08 \mathrm{t} \leftarrow \\
& \sum \mathrm{M}_{\mathrm{e}} \text { for the right side }=5 \mathrm{x} 1.25-2.6 \mathrm{x} 2.5-3 \mathrm{X}_{\mathrm{d}}=0 \therefore \mathrm{X}_{\mathrm{d}}=0.08 \mathrm{t} \leftarrow
\end{aligned}
$$

$$
\text { Check } \sum \mathrm{F}_{\mathrm{y}}=10-7.4-2.6=0 \text { ok } \sum \mathrm{F}_{\mathrm{x}}=4.08-4-0.08=0 \mathrm{ok}
$$

Fig. 4.29.b

Fig. 4.29

Example (25)

For the given frame in Fig. 4.30.a, draw the normal, shear force and bending moment diagrams.

> Solution

$>$ Finding the reactions

$$
Y_{a}=0 \quad Y_{b}=0 \quad X_{a}=0
$$

$\sum \mathrm{M}_{\mathrm{e}}$ for the left side $=10-3 \mathrm{X}_{\mathrm{c}}=0 \therefore \mathrm{X}_{\mathrm{c}}=3.33 \mathrm{t} \leftarrow$
$\sum \mathrm{M}_{\mathrm{e}}$ for the right side $=10-3 \mathrm{X}_{\mathrm{d}}=0 \therefore \mathrm{X}_{\mathrm{d}}=3.33 \mathrm{t} \leftarrow$

Fig. 4.30.a

Fig. 4.30.b
Example (26)
For the given structure in Fig. 4.31.a, draw the normal, shear force and bending moment diagrams.

Fig. 4.31.a

Solution

Finding the reactions
$\sum \mathrm{F}_{\mathrm{x}}=0 \ggg>X_{a}=8 \mathrm{t} \rightarrow$
$\sum \mathrm{M}_{\mathrm{a}}=12 \mathrm{x} 5+4 \mathrm{x} 9-8 \mathrm{x} 3-8 \mathrm{Y}_{\mathrm{b}}=0 \quad \therefore \mathrm{Y}_{\mathrm{b}}=9 \mathrm{t} \uparrow$

$$
\sum \mathrm{M}_{\mathrm{b}}=12 \mathrm{x} 3+8 \mathrm{x} 2-4 \mathrm{x} 1-8 \mathrm{Y}_{\mathrm{a}}=0 \quad \therefore \mathrm{Y}_{\mathrm{a}}=7 \mathrm{t} \uparrow
$$

Check $\sum \mathrm{F}_{\mathrm{y}}=12+4-9-7=0 \ggg>$ ok
> For joint\#1

$$
\begin{equation*}
\sum \mathrm{F}_{\mathrm{x}}=F_{1 x}+8-F_{2 x}=0 \tag{1}
\end{equation*}
$$

$\sum \mathrm{F}_{\mathrm{y}}=F_{1 y}-7+F_{2 y}=0$
$F_{1 x}=F_{1 y} \ldots \ldots(3)$ and $F_{2 x}=F_{2 y}$
By solving the four equations $F_{1 x}=F_{1 y}=0.5 t$ and $F_{1}=0.701 t$ (tension)
$F_{2 x}=F_{2 y}=7.5 t$ and $F_{2}=10.61 t(\mathrm{comp})$

Fig. 4.31.b

Fig. 4.31.c

Fig. 4.31.d

Example (27)

For the given structure in Fig. 4.32.a, draw the normal, shear force and bending moment diagrams.

Solution

Finding the reactions

$$
\begin{aligned}
& \sum \mathrm{F}_{\mathrm{x}}=0 \ggg X_{b}=0 \rightarrow \\
& \quad \sum \mathrm{M}_{\mathrm{a}}=12 \mathrm{x} 3+12 \mathrm{x} 9+4 \mathrm{x} 13-2 \mathrm{x} 2-9 \mathrm{Y}_{\mathrm{b}}=0 \quad \therefore \mathrm{Y}_{\mathrm{b}}=21.33 \mathrm{t} \uparrow \\
& \sum \mathrm{M}_{\mathrm{b}}=12 \mathrm{x} 6+2 \mathrm{x} 11-4 \mathrm{x} 4-9 \mathrm{Y}_{\mathrm{a}}=0 \quad \therefore \mathrm{Y}_{\mathrm{a}}=8.67 \mathrm{t} \uparrow
\end{aligned}
$$

Check $\sum \mathrm{F}_{\mathrm{y}}=12+12+4+2-21.33-8.67=0 \ggg>$ ok

Fig. 4.32.a

$$
\begin{align*}
& \quad>\text { For joint\#b } \\
& \quad \sum \mathrm{F}_{\mathrm{x}}=F_{1 x}-F_{2 x}=0 \ldots . \tag{1}\\
& \sum \mathrm{F}_{\mathrm{y}}=F_{1 y}-21.33+F_{2 y}=0 . \tag{2}\\
& F_{1 x}=0.5 F_{1 y} \ldots \ldots \text { (3) } \tag{4}\\
& F_{2 x}=0.5 F_{2 y} \ldots \ldots \text { (4) } \tag{3}
\end{align*}
$$

By solving the four equations

Joint (b)

$$
\begin{aligned}
& F_{1 x}=5.33 t \text { and } F_{1 y}=10.67 t \text { and } F_{1}=11.92 t(\mathrm{comp}) \\
& F_{2 x}=5.33 t \text { and } F_{2 y}=10.67 t \text { and } F_{2}=11.92 t(\mathrm{comp})
\end{aligned}
$$

5.33t

Fig. 4.32.b

Chapter (5)

TRUSS STRUCTURES

5.1. Introduction

Truss is a type of structures that consist of one or more triangular units. Each unite is constructed with straight slender members whose ends are connected at joints referred to as nodes. This type of structures may be used in building structures or bridges as indicated in Fig. 5.1. In the truss structure, the external forces and reactions to those forces are considered to act only at the nodes and result in forces in the members which are either tensile (pulling the pin) or compressive forces (compress the pin). Moments (torsional forces) are explicitly excluded because all the joints in a truss are treated as pin joints. The components of the truss structure are presented in Fig. 5.2. There are various types of the trusses according to the shape of the trusses as presented in Fig. 5.3.

a) Building

Fig. 5.1: Type of truss structures

b) Bridges

Fig. 5.2: Components of truss structure

Pennsylvania

Fig. 5.3: Classification of the trusses

5.2. Determinacy of the Truss

The degree of the determinacy of the truss structures can be calculated from the below equation.
$\mathrm{I}=\mathrm{b}+\mathrm{r}-2 \mathrm{j}$
Where
$\mathrm{b}=$ number of bars
$r=$ number of external support reaction
$j=$ number of joints
If $\mathrm{I}=0$ the trusses is statically determinate
If $\mathrm{I}>0$, the truss is statically indeterminate $\mathrm{I}<0$ the truss is unstable
The truss may be externally unstable if all of its reactions are concurrent or parallel as shown in Fig. 5.4. Also it may be internally unstable as shown in Fig. 5.5.

Fig. 5.4

a) Internally stable

c) Internally unstable

Fig. 5.5

5.3. Method of Analysis

The analysis method of trusses is based on the assumptions that all members are connected only at their ends by frictionless hinges in plane trusses. Also all loads and support reactions are applied only at the joints.

1. Method of Joints

The method of joints consists of satisfying the equilibrium equations $\sum F_{x}=$ 0 and $\sum F_{y}=0$ for forces acting on each joint. The below steps are followed to determine the forces in the truss member using this method.

1) Determination all the support reactions using the equations of equilibrium.
2) Selecting a joint with one or two unknowns force.
3) Drawing the free-body diagram of a selected joint.
4) Assuming that all unknown member forces act in tension (pulling the pin) unless the force that can be determined by inspection that the forces are compression loads.
5) Apply the scalar equations of equilibrium, $\Sigma F X=0$ and $\Sigma F Y=0$, to determine the unknowns. If the answer is positive, then the assumed direction (tension) is correct, otherwise it is in the opposite direction (compression).
6) Repeating steps 2 to 5 at each joint in succession until all the required forces are determined.

2. Method of Section

This method is used to find analytically the forces in selected members of the truss. In this method, we isolate a portion of truss by an imaginary cut
section. This section passes through all or some of selected members. After that we satisfy at the isolation portion of truss the three equilibrium equations

$$
\sum F_{x}=0 \text { and } \sum F_{y}=0 \text { and } \sum M_{\text {at any point }}=0
$$

3. Graphic Method

This method depends on the three properties of the force; the force has magnitude, direction and point of applied. In this method, the force can be represented by a straight line or vector. The below steps are followed to determine the forces in the truss member using this method.

1) Determine the reactions
2) Represent graphically the external forces (reactions and the applied loads) graphically. In this step, the external forces are represent by a diaphragm starts at a point and end at the same point. Each force is represented by its magnitude and direction.
3) Start with a joint having only two unknown forces.
4) Draw vectors parallel the force directions for the joint. These vectors are closed. Measure the length of these straight lines and multiply by the scale factors. These values represent the force magnitude.
5) Go around the joint in the same direction used in drawing the external forces.
6) Repeat the steps 3 to 5 .

5.4. Zero members

The force in the truss member equals zero in the below cases

1) If only two non-collinear members are connected to a joint that has no external loads or reactions applied to it, then the force in both members is zero (see Fig. 5.6.a).

Fig. 5.6.a
2) If three members form a truss joint for which two of the members are collinear and there is no external load or reaction at that joint as shown in Fig. 5.6.b, then the third non-collinear member is a zero force.

Fig. 5.6.b

5.4. Solved Examples

Example (1)

Find analytically the forces in all members of given truss in Fig. 5.7. by the method of joint.

Fig. 5.7.
Solution
$>$ Finding the reactions
a) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=10 \mathrm{t} \leftarrow$
b) $\sum M_{a}=0 \ggg \ggg \gg 20 x 4+10 x 3-Y_{b} x 7=0 \therefore Y_{b}=15.71 t \uparrow$
c) $\sum M_{b}=0 \ggg \ggg \gg 20 x 3-10 x 3-Y_{a} x 7=0$

$$
\therefore Y_{a}=4.29 \uparrow
$$

d) Check $\sum \mathrm{F}_{\mathrm{y}}=20-4.29-15.71=0 \ggg \ggg \ggg$ ok

$\sum \mathrm{F}_{\mathrm{y}}=0 \quad F_{\mathrm{y} 2}=4.29 \mathrm{t} \downarrow$
$F_{\mathrm{x} 2}=\frac{4}{3} 4.29=5.71 t$
$\sum \mathrm{F}_{\mathrm{x}}=0 \quad F_{\mathrm{x} 1}=15.71 \mathrm{t} \rightarrow$

> Joint (a)
S.71
$4.29 \mathrm{t} \quad 15.71 \mathrm{t}$

$$
\sum \mathrm{F}_{\mathrm{y}}=0 F_{\mathrm{y} 5}=15.71 \mathrm{t} \uparrow
$$

$F_{\mathrm{x} 2}=\frac{3}{3} 15.71=15.71 t \leftarrow$
$\sum \mathrm{F}_{\mathrm{x}}=0$ ok (check)
Joint (d)

$\sum \mathrm{F}_{\mathrm{y}}=0 F_{4}=0$
$\sum \mathrm{F}_{\mathrm{x}}=0 \quad F_{3}=15.71 \mathrm{t} \rightarrow$

Joint (d)

$\sum \mathrm{F}_{\mathrm{y}}=0$ ok
$\sum \mathrm{F}_{\mathrm{x}}=0$ ok (check)

Joint (b)

Fig. 5.7. b

Example (2)

Find analytically the forces in all members of given truss in Fig. 5.8. by the method of joint.

Fig. 5.8.a

Solution

$>$ Finding the reactions
e) $\sum \mathrm{F}_{\mathrm{x}}=0 \ggg \ggg \gg \mathrm{X}_{\mathrm{a}}=6 \mathrm{t} \leftarrow$
f) $\sum M_{a}=0 \ggg \ggg \gg 25 x 4+50 x 8+6 x 3-Y_{b} x 4=0 \therefore Y_{b}=129.5 t \uparrow$
g) $\sum M_{b}=0 \ggg \ggg \ggg 50 x 4+6 x 3-25 x 4-Y_{a} x 4=0 \therefore Y_{b}=29.5 t \downarrow$
h) Check $\sum \mathrm{F}_{\mathrm{y}}=25+50+25+29.5-129.5=0 \ggg \ggg \gg$ ok

$\sum F_{y}=0 \quad F_{y 1}=50 t \uparrow$
$F_{\mathrm{x} 2}=\frac{4}{3} 50=66.67 t \leftarrow$
$\sum \mathrm{F}_{\mathrm{x}}=0 \quad \mathrm{~F}_{2}=66.67 \mathrm{t} \rightarrow$
Joint (c)

$$
\begin{aligned}
& \sum \mathrm{F}_{\mathrm{y}}=0 F_{\mathrm{y} 5}=54.5 \mathrm{t} \downarrow \\
& F_{\mathrm{x} 5}=\frac{4}{3} 54.5=72.67 t \leftarrow
\end{aligned}
$$

$\sum \mathrm{F}_{\mathrm{y}}=0 F_{3}=129.5 \mathrm{t} \downarrow$
$\sum \mathrm{F}_{\mathrm{x}}=0 \quad \mathrm{~F}_{4}=66.67 \mathrm{t} \rightarrow$

Joint (b)

$$
\sum \mathrm{F}_{\mathrm{y}}=0 \quad F_{7}=25 \mathrm{t} \uparrow
$$

$\sum \mathrm{F}_{\mathrm{x}}=0 \mathrm{ok}$

Fig. 5.8.b

Example (3)

Find analytically the forces in all members of given truss in Fig. 5.9.a by the method of joint.

Fig. 5.9.a
Solution
Finding the reactions

$$
\begin{array}{ll}
\sum \mathrm{M}_{\mathrm{a}}=20 \mathrm{x} 6-2 \mathrm{X}_{\mathrm{b}}=0 & \therefore \mathrm{X}_{\mathrm{b}}=60 \mathrm{t} \rightarrow \\
\sum \mathrm{M}_{\mathrm{b}}=20 \times 6-2 \mathrm{X}_{\mathrm{a}}=0 & \therefore \mathrm{X}_{\mathrm{a}}=60 \mathrm{t} \leftarrow
\end{array}
$$

$$
\text { Check } \sum \mathrm{F}_{\mathrm{y}}=\mathrm{Y}_{\mathrm{b}}=20 \mathrm{t} \uparrow
$$

$\sum \mathrm{F}_{\mathrm{y}}=0 F_{\mathrm{y} 1}=20 \mathrm{t} \uparrow$
$F_{\mathrm{x} 1}=F_{\mathrm{y} 1}=20 t \rightarrow$
$\sum \mathrm{F}_{\mathrm{x}}=0 \quad F_{2}=20 \mathrm{t} \leftarrow$ Joint\#c

$\sum \mathrm{F}_{\mathrm{y}}=0 F_{\mathrm{y} 5}=20 \mathrm{t} \uparrow$
$F_{\mathrm{x} 5}=F_{\mathrm{y} 5}=20 t \rightarrow$
$\sum \mathrm{F}_{\mathrm{x}}=0 \mathrm{~F}_{6}=40 \mathrm{t} \leftarrow$ Joint\#e

$\sum \mathrm{F}_{\mathrm{y}}=0 \quad F_{3}=20 \mathrm{t} \uparrow$
$\sum \mathrm{F}_{\mathrm{x}}=0 \quad \mathrm{~F}_{4}=20 \mathrm{t} \rightarrow$

Joint\#b

$$
\sum \mathrm{F}_{\mathrm{y}}=0 \quad \mathrm{~F}_{7}=20 \mathrm{t} \uparrow
$$

$$
\sum \mathrm{F}_{\mathrm{x}}=0 F_{8}=40 \mathrm{t} \rightarrow
$$

Joint\#f

$\sum \mathrm{F}_{\mathrm{y}}=0 \quad \mathrm{~F}_{\mathrm{y} 9}=20 \mathrm{t} \uparrow$
$F_{\mathrm{x} 5}=F_{\mathrm{y} 9}=20 t \rightarrow$

$$
\sum \mathrm{F}_{\mathrm{x}}=0 \quad F_{10}=60 \mathrm{t} \leftarrow
$$

Joint\#g

20t
$\sum \mathrm{F}_{\mathrm{y}}=0 \mathrm{ok}$
$\sum \mathrm{F}_{\mathrm{x}}=00 \mathrm{k}$
Joint\#b

Member	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
Force	21	28.28	20	20	28.28	40	40	20	60
Type	C	T	C	T	T	C	T	C	C

Member	$\mathbf{1 0}$	$\mathbf{1 1}$
Force	28.28	0
Type	T	\cdots

Fig. 5.9.b

Example (4)

Find analytically the forces in all members of given truss in Fig. 5.10.a by the method of joint.

Fig. 5.10.a

Solution

Finding the reactions

$$
\begin{array}{ll}
\sum \mathrm{M}_{\mathrm{a}}=15 \mathrm{x} 3+12 \mathrm{x} 6+15 \mathrm{x} 9-12 \mathrm{Y}_{\mathrm{b}}=0 & \therefore \mathrm{Y}_{\mathrm{b}}=21 \mathrm{t} \uparrow \\
\sum \mathrm{M}_{\mathrm{b}}=15 \mathrm{x} 3+12 \mathrm{x} 6+15 \mathrm{x} 9-12 \mathrm{Y}_{\mathrm{a}}=0 & \therefore \mathrm{Y}_{\mathrm{a}}=21 \mathrm{t} \uparrow
\end{array}
$$

Check $\sum \mathrm{F}_{\mathrm{y}}=0 \mathrm{ok}$
Fig. 5.10.b

$$
\begin{gathered}
\sum \mathrm{F}_{\mathrm{y}}=0 F_{8}=6 \mathrm{t} \downarrow \\
F_{\mathrm{x} 8}=F_{\mathrm{y} 8}=6 t \rightarrow \\
\sum \mathrm{~F}_{\mathrm{x}}=0 \quad F_{2}=27 \mathrm{t} \leftarrow \\
\text { Joint\#b }
\end{gathered}
$$

$$
\sum \mathrm{F}_{\mathrm{y}}=0 F_{\mathrm{y} 10}=6 \mathrm{t} \uparrow
$$

$$
F_{\mathrm{x} 10}=F_{\mathrm{y} 10}=6 t \leftarrow
$$

$$
\sum \mathrm{F}_{\mathrm{x}}=0 \quad F_{3}=21 \mathrm{t} \leftarrow
$$

Joint\#c

$\sum \mathrm{F}_{\mathrm{y}}=0 \quad \mathrm{~F}_{11}=21 \mathrm{t} \uparrow$
$\sum \mathrm{F}_{\mathrm{x}}=0 \mathrm{~F}_{17}=21 \mathrm{t} \rightarrow$

Joint\#k

Joint\#d

$$
\sum \mathrm{F}_{\mathrm{y}}=0 \mathrm{ok}
$$

$\sum \mathrm{F}_{\mathrm{x}}=0 \mathrm{ok}$

$$
o k
$$

Joint\#L
Joint\#e

Member	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
Force	21	27	21	0	21	$21 \sqrt{2}$	6	$6 \sqrt{2}$	6
Type	C	C	C	$\cdots \cdots$	C	T	C	T	T

Fig. 5.10.c

Example (5)

Find analytically the forces in all members of given truss in Fig. 5.11.a by the method of joint.

Fig. 5.11.a
Solution
Finding the reactions

$$
\begin{array}{ll}
\sum F_{x}=0 \quad X_{a}=4 t \rightarrow o k & \\
\sum M_{a}=40 \times 3+40 \times 6-9 Y_{b}=0 & \therefore Y_{b}=40 t \uparrow \\
\sum M_{b}=40 \times 3+40 \times 6-9 Y_{a}=0 & \therefore Y_{a}=40 t \uparrow
\end{array}
$$

Check $\sum \mathrm{F}_{\mathrm{y}}=0 \mathrm{ok}$

Fig. 5.11.b

$$
\sum F_{y}=0 F_{y 1}=40 t \uparrow
$$

$$
F_{\mathrm{x} 1}=F_{\mathrm{y} 1}=40 t \leftarrow
$$

$$
\sum \mathrm{F}_{\mathrm{x}}=0 \quad F_{2}=36 \mathrm{t} \rightarrow
$$

Joint (a)

$\sum \mathrm{F}_{\mathrm{y}}=0 \quad F_{3}=40 \mathrm{t} \uparrow$
$\sum \mathrm{F}_{\mathrm{x}}=0 \mathrm{~F}_{4}=40 \mathrm{t} \rightarrow$

Joint (c)

$$
\begin{array}{lr}
\sum \mathrm{F}_{\mathrm{y}}=0 F_{\mathrm{y} 5}=0 & \sum \mathrm{~F}_{\mathrm{y}}=0 F_{7}=40 \mathrm{t} \uparrow \\
F_{\mathrm{x} 5}=F_{\mathrm{y} 5}=0 & \sum \mathrm{~F}_{\mathrm{x}}=0 F_{8}=40 \mathrm{t} \rightarrow
\end{array}
$$

$\sum \mathrm{F}_{\mathrm{x}}=0 F_{6}=40 \mathrm{t} \leftarrow$
Joint (d)

> Joint (e)

$$
\sum F_{y}=0 F_{y 9}=40 t \downarrow
$$

$$
\sum \mathrm{F}_{\mathrm{y}}=0 \mathrm{ok}
$$

$$
F_{\mathrm{x} 5}=F_{\mathrm{y} 5}=40 t \rightarrow
$$

$$
\sum \mathrm{F}_{\mathrm{x}}=0 \mathrm{ok}
$$

$$
\sum \mathrm{F}_{\mathrm{x}}=0 \mathrm{ok}
$$

Joint (b)
Joint (f)

Member	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
Force	56.57	36	40	40	0	40	40	40	56.57
Type	C	T	T	T	----	C	T	T	C

Fig. 5.11.c

Example (6)

Find analytically the forces in all members of given truss in Fig. 5.12.a. by the method of joint.

$\mid-2 \mathrm{~m} \rightarrow-2 \mathrm{~m} \rightarrow-2 \mathrm{~m} \rightarrow-2 \mathrm{~m} \rightarrow-2 \mathrm{~m} \rightarrow-1-2 \mathrm{~m} \rightarrow 1$
Fig. 5.12.a

Solution

Finding the reactions

$$
\begin{array}{ll}
\sum \mathrm{F}_{\mathrm{x}}=0 \mathrm{~F}_{\mathrm{xd}}=5 \mathrm{t} \rightarrow & \\
\sum \mathrm{M}_{\mathrm{d}}=6 \mathrm{x} 2+10 \mathrm{x} 6+6 \mathrm{x} 10-5 \mathrm{x} 4-12 \mathrm{Y}_{\mathrm{g}}=0 & \therefore \mathrm{Y}_{\mathrm{g}}=9.33 \mathrm{t} \uparrow \\
\sum \mathrm{M}_{\mathrm{g}}=6 \mathrm{x} 2+10 \mathrm{x} 6+6 \mathrm{x} 10+5 \mathrm{x} 4-12 \mathrm{Y}_{\mathrm{d}}=0 & \therefore \mathrm{Y}_{\mathrm{d}}=12.67 \mathrm{t} \uparrow
\end{array}
$$

Check $\sum \mathrm{F}_{\mathrm{y}}=0 \mathrm{ok}$

Fig. 5.12. b

$$
\begin{gathered}
\sum \mathrm{F}_{\mathrm{y}}=0 \quad F_{\mathrm{y} 3}=12.67 \mathrm{t} \downarrow \\
F_{\mathrm{x} 3}=0.5 F_{\mathrm{y} 3}=6.33 t \leftarrow \\
\sum \mathrm{~F}_{\mathrm{x}}=0 \quad F_{9}=\begin{array}{c}
\text { Joint\#d }
\end{array} .33 \mathrm{t} \rightarrow \overrightarrow{\text { Jon }}
\end{gathered}
$$

$\sum \mathrm{F}_{\mathrm{y}}=0 \quad F_{\mathrm{y} 5}=6.67 \mathrm{t} \downarrow$
$F_{\mathrm{x} 3}=0.5 F_{\mathrm{y} 5}=3.33 t \leftarrow$

$$
\sum \mathrm{F}_{\mathrm{y}}=0 F_{\mathrm{y} 8}=9.33 \mathrm{t} \uparrow
$$

$$
F_{\mathrm{x} 3}=0.5 F_{\mathrm{y} 8}=4.66 t \leftarrow
$$

$$
\sum \mathrm{F}_{\mathrm{x}}=0 \mathrm{ok}
$$

Joint\#c

$\sum \mathrm{F}_{\mathrm{y}}=0 \quad F_{\mathrm{y} 7}=3.33 \mathrm{t} \uparrow$
$F_{\mathrm{x} 3}=0.5 F_{\mathrm{y} 7}=1.67 t \rightarrow$
$\sum \mathrm{F}_{\mathrm{x}}=0 \quad \mathrm{~F}_{11}=4.66 \mathrm{t} \rightarrow$
Joint\#f

$\sum \mathrm{F}_{\mathrm{y}}=0$ ok $\sum \mathrm{F}_{\mathrm{x}}=0$ ok

Joint\#g

Member	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
Force	9.67	11.33	14.16	7.46	7.46	3.72
Type	C	C	C	T	C	C

Member	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$
Force	3.72	10.43	1.33	8	4.66
Type	T	C	T	T	T

Fig. 5.12.c

Example (6)

Find analytically the forces in all members of given truss in Fig. 5.13.a. by the method of joint.

Fig. 5.13.a
Solution
Finding the reactions

$$
\begin{aligned}
& \sum \mathrm{F}_{\mathrm{x}}=0 \mathrm{X}_{\mathrm{a}}=6 \mathrm{t} \rightarrow \\
& \sum \mathrm{M}_{\mathrm{a}}=30 \mathrm{x} 2+30 \mathrm{x} 4+30 \mathrm{x} 6+15 \mathrm{x} 8-6 \mathrm{x} 2.31-8 \mathrm{Y}_{\mathrm{b}}=0
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \mathrm{Y}_{\mathrm{b}}=58.27 \uparrow \\
& \sum \mathrm{M}_{\mathrm{b}}=30 \mathrm{x} 2+30 \times 4+30 \mathrm{x} 6+15 \mathrm{x} 8+6 \times 2.31-8 \mathrm{Y}_{\mathrm{a}}=0 \quad \mathrm{Y}_{\mathrm{a}}=61.73 \uparrow \\
& \text { Check } \sum \mathrm{F}_{\mathrm{y}}=0 \mathrm{ok}
\end{aligned}
$$

$\sum \mathrm{F}_{\mathrm{y}}=0 \quad F_{\mathrm{y} 1}=46.73 \mathrm{t} \downarrow$
$F_{\mathrm{x} 1}=\frac{F_{y 1}}{\tan 30}=80.94 \leftarrow$

$$
\sum \mathrm{F}_{\mathrm{x}}=0 \quad F_{3}=74.94 \mathrm{t} \rightarrow
$$

46.73t
$\sum \mathrm{F}_{\mathrm{y}}=0 F_{\mathrm{y} 2}-F_{\mathrm{y} 4}=16.73 \mathrm{t} \downarrow$
$F_{\mathrm{x} 2}=\frac{F_{y 2}}{\tan 30}$
$\sum \mathrm{F}_{\mathrm{x}}=0 F_{\mathrm{x} 2}+F_{\mathrm{x} 4}=80.94 \mathrm{t}$
$F_{\mathrm{x} 4}=\frac{F_{y 4}}{\tan 30}$

$$
\begin{aligned}
& F_{\mathrm{y} 2}=31.73 t \downarrow F_{\mathrm{y} 4}=15.00 t \uparrow \\
& F_{\mathrm{x} 2}=54.95 t \leftarrow F_{\mathrm{x} 4}=25.98 t \leftarrow
\end{aligned}
$$

Joint\#a
Joint\#c

$$
\begin{aligned}
& \sum \mathrm{F}_{\mathrm{y}}=0 \quad F_{\mathrm{y} 7}=43.27 \mathrm{t} \downarrow \\
& F_{\mathrm{x} 7}=\frac{F_{y 7}}{\tan 30}=74.95 \rightarrow \\
& \quad \sum \mathrm{~F}_{\mathrm{x}}=0 \quad F_{9}=74.95 \mathrm{t} \leftarrow
\end{aligned}
$$

$$
\begin{aligned}
& \sum \mathrm{F}_{\mathrm{y}}=0 F_{\mathrm{y} 6}-F_{\mathrm{y} 8}=13.27 \mathrm{t} \downarrow \\
& F_{\mathrm{x} 6}=\frac{F_{y 6}}{\tan 30} \\
& \sum \mathrm{~F}_{\mathrm{x}}=0 F_{\mathrm{x} 6}+F_{\mathrm{x} 8}=74.95 \mathrm{t} \\
& F_{\mathrm{x} 8}=\frac{F_{y 8}}{\tan 30} \\
& F_{\mathrm{y} 6}=28.27 t \downarrow F_{\mathrm{y} 8}=15.00 t \uparrow \\
& F_{\mathrm{x} 6}=48.97 t \rightarrow F_{\mathrm{x} 8}=25.98 t \rightarrow
\end{aligned}
$$

Joint\#b

Joint\#f

$$
\begin{array}{ll}
\sum \mathrm{F}_{\mathrm{y}}=0 \mathrm{~F}_{5}=30 \mathrm{t} \downarrow & \sum \mathrm{~F}_{\mathrm{y}}=0 \text { ok } \\
\sum \mathrm{F}_{\mathrm{x}}=0 \text { ok } & \sum \mathrm{F}_{\mathrm{x}}=0 \text { ok }
\end{array}
$$

Joint\#e
Joint\#d

Member	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
Force	93.46	63.45	74.94	30	30	56.54
Type	C	C	T	C	T	C

Member	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
Force	86.54	30	74.95
Type	C	C	T

Fig. 5.13.b

Example (7)

Find analytically the forces in all members of given truss in Fig. 5.14.a by the method of joint.

Fig. 5.14. a
Solution

Finding the reactions

$$
\begin{aligned}
& \sum \mathrm{F}_{\mathrm{x}}=0 \mathrm{X}_{\mathrm{a}}=6 \mathrm{t} \rightarrow \\
& \sum \mathrm{M}_{\mathrm{a}}=10 \mathrm{x} 3+10 \mathrm{x} 6+10 \times 9+8 \times 12-4 \mathrm{x} 6-12 \mathrm{Y}_{\mathrm{h}}=0
\end{aligned}
$$

$$
\therefore \mathrm{Y}_{\mathrm{h}}=21 \uparrow
$$

$$
\sum M_{h}=10 x 3+10 x 6+10 x 9+8 x 12+4 x 6-12 Y_{a}=0 \quad \therefore Y_{a}=25 t \uparrow
$$ Check $\sum \mathrm{F}_{\mathrm{y}}=0 \mathrm{ok}$

Fig. 5. 14. b

$$
\sum \mathrm{F}_{\mathrm{y}}=0 F_{\mathrm{y} 1}=17 \mathrm{t} \downarrow
$$

$$
F_{\mathrm{x} 5}=F_{\mathrm{y} 1}=17 t \leftarrow
$$

$$
\sum \mathrm{F}_{\mathrm{x}}=0 F_{5}=13 \mathrm{t} \rightarrow
$$

Joint\#a

$$
\sum \mathrm{F}_{\mathrm{y}}=0 \quad F_{6}=\text { zero }
$$

$\sum \mathrm{F}_{\mathrm{y}}=0 \quad \mathrm{~F}_{6}=$ zero
$\sum \mathrm{F}_{\mathrm{x}}=0 \quad \mathrm{~F}_{7}=13 \mathrm{t} \rightarrow$

$\sum \mathrm{F}_{\mathrm{y}}=0 \quad F_{\mathrm{y} 2}-F_{\mathrm{y} 8}=7$
$F_{\mathrm{x} 2}=F_{\mathrm{y} 2}$ and $F_{\mathrm{x} 8}=F_{\mathrm{y} 8}$
$\sum \mathrm{F}_{\mathrm{x}}=0 F_{\mathrm{x} 2}+F_{\mathrm{x} 8}=17$
$F_{\mathrm{x} 2}=12 t \leftarrow F_{\mathrm{y} 2}=12 t \downarrow$
$F_{\mathrm{x} 8}=5 \leftarrow F_{\mathrm{y} 8}=5 t \uparrow$
Joint\#b

$\sum \mathrm{F}_{\mathrm{y}}=0 F_{\mathrm{y} 11}=5 \mathrm{t} \downarrow$
$F_{\mathrm{x} 11}=5 \mathrm{t} \leftarrow$
$\sum \mathrm{F}_{\mathrm{x}}=0 \quad F_{10}=13 \mathrm{t} \rightarrow$
Joint\#e
$\sum \mathrm{F}_{\mathrm{y}}=0 \quad \mathrm{~F}_{\mathrm{y} 12}=$ zero

$\sum \mathrm{F}_{\mathrm{x}}=0 \quad F_{\mathrm{x} 3}=8 \mathrm{t} \uparrow$
$F_{\mathrm{x} 3}=F_{\mathrm{y} 3}=8 t \leftarrow$
$\sum \mathrm{F}_{\mathrm{y}}=0 \quad \mathrm{~F}_{9}=10 \mathrm{t} \downarrow$

Joint\#c

$\sum \mathrm{F}_{\mathrm{x}}=0 F_{13}=13 \mathrm{t} \rightarrow$

$\sum \mathrm{F}_{\mathrm{y}}=0 \quad F_{\mathrm{y} 4}=13 \mathrm{t} \uparrow \quad \sum \mathrm{F}_{\mathrm{y}}=0$ ok
$F_{\mathrm{x} 4}=F_{\mathrm{y} 4}=13 t \leftarrow$
$\sum \mathrm{F}_{\mathrm{x}}=0 \mathrm{ok}$
Joint\#g

Member	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$
Force	$17 \sqrt{2}$	$12 \sqrt{2}$	$8 \sqrt{2}$	$13 \sqrt{2}$	13	0	13	$5 \sqrt{2}$	10	13	$5 \sqrt{2}$	0	13
Type	C	C	C	C	T	\cdots	T	C	T	T	C	\cdots	T

Example (8)

Find analytically the forces in all members of given truss in Fig. 5.15. a by the method of joint.

Fig. 5.15.a
Solution

Finding the reactions

$$
\begin{aligned}
& \sum F_{x}=0 X_{o}=5 t \rightarrow \\
& \sum M_{g}=9 x 2+9 \times 4+9 \times 6+9 x 8+7 \times 10-5 \times 4-12 Y_{o}=0 \\
& \quad \therefore Y_{o}=19.17 \uparrow \\
& \sum M_{o}=7 x 2+9 \times 4+9 x 6+9 x 8+9 \times 10+7 \times 12+5 \mathrm{x} 4-12 Y_{g}=0 \\
& \quad \therefore Y_{g}=30.83 \uparrow
\end{aligned}
$$

Check $\sum \mathrm{F}_{\mathrm{y}}=0 \mathrm{ok}$

Fig. 5.15.b

$\sum \mathrm{F}_{\mathrm{y}}=0 \quad F_{\mathrm{y} 9}=3.17 \mathrm{t} \downarrow$
$F_{\mathrm{x} 5}=0.5 F_{\mathrm{y} 9}=1.59 t \rightarrow$
$\sum \mathrm{F}_{\mathrm{x}}=0 \quad F_{10}=22.27 \mathrm{t} \leftarrow$
Joint\#m

$\sum \mathrm{F}_{\mathrm{y}}=0 \quad \mathrm{~F}_{\mathrm{y} 13}=5.83 \mathrm{t} \uparrow$
$F_{\mathrm{x} 5}=0.5 F_{\mathrm{y} 13}=2.195 t \rightarrow$
$\sum \mathrm{F}_{\mathrm{x}}=0 \quad \mathrm{~F}_{14}=20.075 \mathrm{t} \rightarrow$ Joint\#d

$\sum \mathrm{F}_{\mathrm{x}}=0 \quad F_{7}=20.68 \mathrm{t} \leftarrow$

$$
\sum \mathrm{F}_{\mathrm{y}}=0 F_{12}=0
$$

$$
\sum \mathrm{F}_{\mathrm{x}}=0 \quad F_{11}=22.27 \mathrm{t} \leftarrow
$$

Joint\#L

$\sum \mathrm{F}_{\mathrm{y}}=0 \quad F_{16}=9 \mathrm{t} \uparrow$
$\sum \mathrm{F}_{\mathrm{x}}=0 \quad \mathrm{~F}_{15}=20.075 \mathrm{t} \rightarrow$

$$
\begin{aligned}
& \sum \mathrm{F}_{\mathrm{y}}=0 \mathrm{~F}_{\mathrm{y} 17}=14.83 \mathrm{t} \uparrow \\
& \sum \mathrm{~F}_{\mathrm{y}}=0 F_{20}=\text { zero } \\
& F_{\mathrm{x} 5}=0.5 F_{\mathrm{y} 17}=7.415 t \leftarrow \\
& \sum \mathrm{~F}_{\mathrm{x}}=0 \quad F_{19}=12.66 \mathrm{t} \leftarrow \\
& \text { Joint\#h }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 23.83t } \\
& \sum \mathrm{F}_{\mathrm{y}}=0 \quad F_{\mathrm{y} 21}=23.83 \mathrm{t} \uparrow \\
& F_{\mathrm{x} 5}=0.5 F_{\mathrm{y} 21}=11.915 t \rightarrow \\
& \sum \mathrm{~F}_{\mathrm{x}}=0 \mathrm{~F}_{22}=\text { zero } \\
& \text { Joint\#b } \\
& \sum \mathrm{F}_{\mathrm{y}}=0 \quad F_{23}=7 \mathrm{t} \uparrow \\
& \sum \mathrm{~F}_{\mathrm{x}}=0 \text { ok } \\
& \sum \mathrm{F}_{\mathrm{y}}=0 \text { ok } \\
& \sum \mathrm{F}_{\mathrm{x}}=0 \mathrm{ok} \\
& \text { Joint\#g }
\end{aligned}
$$

| Member | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Force | 21.43 | 14.59 | zero | 14.59 | 13.61 | 20.68 | 20.68 | 9 | 3.55 | 22.27 |
| Type | C | T | --- | T | T | C | T | C | C | T |

Member	11	12	13	14	15	16	17	18	19	20
Force	22.27	0	6.23	20.07	20.075	9	16.58	12.66	12.66	zero
Type	T	----	C	C	C	C	T	T	T	----
Member	21	22	23							
Force	26.64	zero	7							
Type	C	---	C							

Example (9)

Find analytically the forces in all members of given truss in Fig. 5.16. a by the method of joint.

Fig. 5.16.a

Solution
Finding the reactions

$$
\begin{aligned}
& \sum \mathrm{F}_{\mathrm{x}}=0 \mathrm{X}_{\mathrm{a}}=10 \mathrm{t} \leftarrow \\
& \sum \mathrm{M}_{\mathrm{a}}=5 \mathrm{x} 4+5 \mathrm{x} 8+15 \mathrm{x} 4+30 \mathrm{x} 8+15 \mathrm{x} 12-8 \mathrm{Y}_{\mathrm{b}}=0 \\
& \therefore \mathrm{Y}_{\mathrm{b}}=67.5 \uparrow \\
& \sum \mathrm{M}_{\mathrm{b}}=-15 \mathrm{x} 4+15 \mathrm{x} 4-5 \mathrm{x} 4-10 \mathrm{x} 4-8 \mathrm{Y}_{\mathrm{a}}=0 \\
& \quad \therefore \mathrm{Y}_{\mathrm{a}}=7.5 \downarrow
\end{aligned}
$$

Check $\sum \mathrm{F}_{\mathrm{y}}=0 \mathrm{ok}$

Fig. 5. 16.b

$\sum \mathrm{F}_{\mathrm{x}}=0 F_{\mathrm{x} 2}=10 \rightarrow$
$F_{\mathrm{x} 2}=F_{\mathrm{y} 2}=10 t \uparrow$
$\sum \mathrm{F}_{\mathrm{y}}=0 \quad F_{1}=2.5 \mathrm{t} \downarrow$
Joint (a)

$\sum \mathrm{F}_{\mathrm{y}}=0 \mathrm{~F}_{6}=10 \mathrm{t} \uparrow$
$\sum \mathrm{F}_{\mathrm{x}}=0 \mathrm{~F}_{5}=7.5 \mathrm{t} \rightarrow$

Joint (d)

2.5 t
$\sum \mathrm{F}_{\mathrm{y}}=0 \quad F_{\mathrm{y} 7}=22.5 \mathrm{t} \uparrow$
$\sum \mathrm{F}_{\mathrm{y}}=0 \quad F_{\mathrm{y} 4}=2.5 \mathrm{t} \downarrow$
$F_{\mathrm{x} 4}=F_{\mathrm{x} 4}=2.5 t \leftarrow$
$\sum \mathrm{F}_{\mathrm{x}}=0 \quad \mathrm{~F}_{3}=2.5 \mathrm{t} \leftarrow$ Joint (c)
15t

$F_{\mathrm{x} 7}=F_{\mathrm{x} 7}=22.5 t \leftarrow$
$\sum \mathrm{F}_{\mathrm{x}}=0 \quad \mathrm{~F}_{8}=15 \mathrm{t} \rightarrow$ Joint (e)

Member	10	11
Force	15	21.21
Type	T	C

Fig. 5.16.a

Example (10)

Find analytically the forces in all members of given truss in Fig. 5.17.a by the method of joint.

Fig. 5. 17.a

Solution

Finding the reactions

$$
\begin{aligned}
& \sum F_{x}=0 X_{a}=5 t \rightarrow \\
& \sum M_{a}=20 \times 3+20 \times 6+10 \times 9-5 \times 3-9 Y_{b}=0
\end{aligned}
$$

$$
\therefore \mathrm{Y}_{\mathrm{b}}=28.33 \uparrow
$$

$$
\sum M_{b}=20 \times 3+20 \times 6+10 \times 9+5 \times 3-9 Y_{a}=0
$$

$$
\therefore \mathrm{Y}_{\mathrm{a}}=31.67 \uparrow
$$

$$
\text { Check } \sum \mathrm{F}_{\mathrm{y}}=0 \mathrm{ok}
$$

Fig. 5. 17.b

$$
\sum \mathrm{F}_{\mathrm{y}}=0 F_{6}=21.67 \mathrm{t} \downarrow
$$

$$
\sum \mathrm{F}_{\mathrm{y}}=0 \quad F_{\mathrm{y} 7}=1.67 \mathrm{t} \downarrow
$$

$$
F_{\mathrm{x} 7}=F_{\mathrm{x} 7}=1.67 t \rightarrow
$$

$$
\sum \mathrm{F}_{\mathrm{x}}=0 \quad F_{8}=23.34 \mathrm{t} \leftarrow
$$

Joint (e)
$\sum \mathrm{F}_{\mathrm{y}}=0 \quad \mathrm{~F}_{9}=20 \mathrm{t} \uparrow$
$\sum \mathrm{F}_{\mathrm{x}}=0 \quad F_{10}=23.34 \mathrm{t} \leftarrow$

Joint (f)

$$
\begin{aligned}
& \sum \mathrm{F}_{\mathrm{y}}=0 \quad F_{\mathrm{y} 11}=18.33 \mathrm{t} \uparrow \\
& F_{\mathrm{x} 11}=F_{\mathrm{x} 11}=18.33 t \rightarrow \\
& \sum \mathrm{~F}_{\mathrm{x}}=0 \quad F_{12}=\text { zero }
\end{aligned}
$$

$\sum \mathrm{F}_{\mathrm{y}}=0 \quad \mathrm{~F}_{13}=28.33 \mathrm{t} \uparrow$
check $\sum \mathrm{F}_{\mathrm{y}}=0$ ok
Check $\sum \mathrm{F}_{\mathrm{x}}=0$ ok
Check $\sum \mathrm{F}_{\mathrm{x}}=0$ ok
Joint (b)

Member	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
Force	31.67	5	30.65	21.67	16.67	21.67	2.36	23.34	20	23.34
Type	C	C	T	C	T	C	T	C	C	C
Member	11	12	13							
Force	25.92	0	28.33							
Type	T	----	C							

Fig. 5. 17.c

Example (11)

Find analytically the forces in all members of given truss in Fig. 5.18.a by the method of joint.

Fig. 5.18.a
Solution

Finding the reactions

$$
\begin{aligned}
& \sum \mathrm{F}_{\mathrm{x}}=0 \mathrm{X}_{\mathrm{b}}=5 \mathrm{t} \leftarrow \\
& \sum \mathrm{M}_{\mathrm{a}}=30 \times 3+30 \mathrm{x} 6+30 \times 12+15 \times 15+5 \mathrm{x} 3-12 \mathrm{Y}_{\mathrm{b}}=0
\end{aligned}
$$

$$
\therefore \mathrm{Y}_{\mathrm{b}}=95 \mathrm{t} \uparrow
$$

$$
\sum M_{b}=-15 \times 3+30 \times 3+30 \times 6+30 \times 9+15 \times 12-5 \times 3-12 Y_{a}=0
$$

$$
\therefore \mathrm{Y}_{\mathrm{a}}=55 \mathrm{t} \uparrow
$$

$$
\text { Check } \sum \mathrm{F}_{\mathrm{y}}=0 \mathrm{ok}
$$

Fig. 5.18.b

55 t

$\sum \mathrm{F}_{\mathrm{y}}=0 F_{5}=40 \mathrm{t} \downarrow$
$\sum \mathrm{F}_{\mathrm{x}}=0 \mathrm{~F}_{6}=40 \mathrm{t} \rightarrow$

Joint (d)

$$
\begin{aligned}
& \sum \mathrm{F}_{\mathrm{y}}=0 \quad F_{\mathrm{y} 3}=40 \mathrm{t} \downarrow \\
& F_{\mathrm{x} 3}=F_{\mathrm{x} 3}=40 t \rightarrow \\
& \sum \mathrm{~F}_{\mathrm{x}}=0 \quad F_{4}=45 \mathrm{t} \leftarrow
\end{aligned}
$$

Joint (c)

$\sum \mathrm{F}_{\mathrm{y}}=0 \quad F_{\mathrm{y} 7}=10 \mathrm{t} \downarrow$
$F_{\mathrm{x} 7}=F_{\mathrm{x} 7}=10 t \rightarrow$
$\sum \mathrm{F}_{\mathrm{x}}=0 \quad F_{8}=55 \mathrm{t} \leftarrow$ Joint (e)

$$
\begin{aligned}
& \sum \mathrm{F}_{\mathrm{y}}=0 F_{9}=30 \mathrm{t} \uparrow \\
& \sum \mathrm{~F}_{\mathrm{x}}=0 \quad F_{10}=55 \mathrm{t} \leftarrow
\end{aligned}
$$

Joint (f)

$$
\sum \mathrm{F}_{\mathrm{y}}=0 F_{13}=50 \mathrm{t} \uparrow
$$

$$
\sum \mathrm{F}_{\mathrm{x}}=0 \quad F_{14}=35 \mathrm{t} \leftarrow
$$

Joint (h)

$\sum \mathrm{F}_{\mathrm{y}}=0 \quad F_{\mathrm{y} 11}=20 \mathrm{t} \uparrow$
$F_{\mathrm{x} 11}=F_{\mathrm{x} 11}=20 t \rightarrow$

$$
\sum \mathrm{F}_{\mathrm{x}}=0 F_{12}=30 \mathrm{t} \rightarrow
$$

Joint (g)

$\sum \mathrm{F}_{\mathrm{y}}=0 \quad F_{\mathrm{y} 15}=50 \mathrm{t} \uparrow$
$F_{\mathrm{x} 15}=F_{\mathrm{x} 15}=50 t \rightarrow$
$\sum \mathrm{F}_{\mathrm{x}}=0 \quad F_{16}=20 \mathrm{t} \leftarrow$

$$
\begin{array}{r}
\sum \mathrm{F}_{\mathrm{y}}=0 \quad F_{17}=95 \mathrm{t} \downarrow \\
\sum \mathrm{~F}_{\mathrm{x}}=0 \quad F_{18}=15 \mathrm{t} \leftarrow \\
\text { Joint }(\mathrm{b})
\end{array}
$$

$\sum \mathrm{F}_{\mathrm{y}}=0 \quad \mathrm{~F}_{21}=15 \mathrm{t} \uparrow$
Check $\sum \mathrm{F}_{\mathrm{x}}=0$ ok
Joint (L)
$\sum \mathrm{F}_{\mathrm{y}}=0 \quad F_{\mathrm{y} 19}=15 \mathrm{t} \downarrow$
$F_{\mathrm{x} 19}=F_{\mathrm{x} 19}=15 t \rightarrow$
$\sum \mathrm{F}_{\mathrm{x}}=0 \quad F_{20}=0$
Joint (j)

Check $\sum \mathrm{F}_{\mathrm{y}}=0$ ok
Check $\sum \mathrm{F}_{\mathrm{x}}=0$ ok Joint (k)

Member	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
Force	55	Zero	56.56	45	40	40	14.14	55	30	55
Type	C	---	T	C	T	C	T	C	C	C
Member	11	12	13	14	15	16	17	18	19	20
Force	28.28	30	50	35	70.71	20	95	15	21.21	zero
Type	T	C	C	C	T	C	C	C	T	----
Member	21									
Force	15									
Type	C									

Fig. 5.18.c

Example (12)

Find analytically the forces in selected members of given truss in Fig. 5.19.a by the method of section.

Fig. 5. 19.a
Solution
Finding the reactions

$$
\begin{aligned}
& \sum F_{x}=0 X_{b}=2 t \leftarrow \\
& \sum M_{a}=6 x 3+4 x 3+8 x 6+4 x 9-2 x 3-12 Y_{b}=0
\end{aligned}
$$

$$
\therefore \mathrm{Y}_{\mathrm{b}}=9 \mathrm{t} \uparrow
$$

$$
\sum M_{b}=4 \mathrm{x} 3+8 \mathrm{x} 6+4 \mathrm{x} 9+6 \mathrm{x} 9+2 \mathrm{x} 3-12 \mathrm{Y}_{\mathrm{a}}=0
$$

$$
\therefore \mathrm{Y}_{\mathrm{a}}=13 \mathrm{t} \uparrow
$$

Check $\sum \mathrm{F}_{\mathrm{y}}=0 \mathrm{ok}$

$>$ For Sec. A-A
$\sum F_{y}=0 \quad F_{2 y}=9-4=$
$5 t \downarrow$
$F_{2 y}=F_{2 x} \quad F_{2 x}=5 t$
$F_{2}=5 \sqrt{2}($ tension $)$
$\sum M_{o}=9 x 3+2 x 3-F_{3} x 3=0$

$$
F_{3}=11 t \leftarrow
$$

$\sum M_{c}=9 x 6-4 x 3+2 x 3+F_{1} x 3=0$

$$
\begin{aligned}
& F_{1}=16 t \rightarrow(\text { compresion }) \\
& \sum F_{x}=0 \quad 2+5+11-2-16=0
\end{aligned}
$$

- For Sec. B-B

$$
\sum M_{o}=13 x 3-F_{3} x 3=0
$$

$$
\begin{aligned}
& F_{3}=13 t \leftarrow \\
& \sum M_{c}=16 x 3-13 x 3-F_{2 x} x 3=0 \\
& F_{2 x}=3 t \rightarrow \\
& F_{2 y}=F_{2 x} F_{2 y}=3 t \downarrow \\
& F_{2}=3 \sqrt{2} t
\end{aligned}
$$

$$
\text { Check } \sum F_{x}=0 \quad 3+13-16=0
$$

$$
\sum F_{y}=0 \quad F_{1}=13-4-3=6 t \uparrow(\text { tension })
$$

Fig. 5.19.b

Example (13)

Find analytically the forces in selected members of given truss in Fig. 5.20.a by the method of section.

Fig. 5.20.a
Solution
Finding the reactions
$\sum \mathrm{F}_{\mathrm{x}}=0 \mathrm{X}_{\mathrm{b}}=2 \mathrm{t} \leftarrow$

$$
\begin{gathered}
\sum M_{a}=6 \times 2.5+6 \times 5+1 \times 7.5+2 \times 3.75+2 \times 2.5-10 Y_{b}=0 \\
\therefore Y_{b}=6.5 t \uparrow \\
\sum M_{b}=6 \times 7.5+6 \times 5+1 \times 2.5+2 \times 6.25-2 \times 2.5-10 Y_{a}=0
\end{gathered}
$$

$$
\therefore \mathrm{Y}_{\mathrm{a}}=8.5 \mathrm{t} \uparrow
$$

Check $\sum \mathrm{F}_{\mathrm{y}}=0 \mathrm{ok}$

Fig. 5.20.b
$>$ For Sec. A-A
$\sum F_{y}=0 \quad F_{2 y}=6.5-1=$
$5.5 t \downarrow$

$F_{2 y}=F_{2 x} \quad F_{2 x}=5.5 t$

$$
\begin{aligned}
& F_{2}=5.5 \sqrt{2} \\
& \sum M_{c}=1 \times 2.5-6.5 \times 5-F_{1} x 2.5=0 \\
& \qquad F_{1}=12 t \rightarrow(\text { compresion }) \\
& \sum M_{o}=6.5 x 2.5-2 \times 2.5-F_{3} x 2.5=0 \\
& F_{3}=4.5 t \leftarrow(\text { tension }) \\
& \text { check } \sum F_{x}=0 \quad 2+4.5+5.5-12=0
\end{aligned}
$$

\Rightarrow For Sec. B-B

$$
\begin{aligned}
& \sum M_{c}=8.5 \times 2.5+2 \times 1.25-F_{3} \times 2.5=0 \\
& F_{3}=9.5 t \rightarrow(\text { tension })
\end{aligned}
$$

$$
\text { check } \sum M_{0}=10 \times 2.5-8.5 \times 5+
$$

$$
2 x 1.25+6 x 2.5=0 \text { ok }
$$

$\sum F_{y}=0 \quad F_{2 y}=8.5-2-6=o .5 t \downarrow$
$F_{2 y}=F_{2 x} F_{2 x}=0.5 t \rightarrow$
$F_{2}=0.5 \sqrt{2}$ (tension)
check $\sum F_{x}=0 \quad 12-2-9.5-0.5=0$ ok
$>$ For Sec. C-C
$\sum M_{c}=8.5 \times 1.25+6 \times 1.25-9.5 \times 1.25-$ $F_{4} \times 1.7677=0$

$F_{4}=5 / \sqrt{2}($ tension $)$
$\sum M_{0}=8.5 \times 3.75-6 \times 1.25-9.5 \times 1.25-F_{2} \times 1.25 \sqrt{2}=0$
$F_{2}=5 \sqrt{2}(\mathrm{comp})$
check $\sum F_{y}=8.5-6+2.5-5=0$ ok
$\sum F_{x}=0 \quad 9.5+2.5-5+F_{1}=0$
$F_{1}=7 t \leftarrow($ compresion $)$

Fig. 5.20.b

Example (13)

Find analytically the forces in selected members of given truss in Fig. 5.21.a by the method of section

Fig. 5.21.a
Solution
Finding the reactions

$$
\begin{aligned}
& \sum \mathrm{F}_{\mathrm{x}}=0 \mathrm{X}_{\mathrm{b}}=0 \\
& \sum \mathrm{M}_{\mathrm{a}}=8 \mathrm{x} 4+2 \mathrm{x} 10+20 \mathrm{x} 16-10 \mathrm{Y}_{\mathrm{b}}=0 \\
& \quad \therefore \mathrm{Y}_{\mathrm{b}}=37.2 \mathrm{t} \uparrow
\end{aligned}
$$

$$
\sum M_{b}=8 \times 6-20 \times 6-10 Y_{a}=0
$$

$$
\therefore \mathrm{Y}_{\mathrm{a}}=7.2 \mathrm{t} \downarrow
$$

Check $\sum \mathrm{F}_{\mathrm{y}}=0 \mathrm{ok}$

Fig. 5.21.b
> For Sec. A-A

$$
\begin{aligned}
& \sum F_{y}=0 \quad F_{2 y}+F_{1 y}=37.2 t \\
& \sum F_{x}=0 \quad F_{2 x}-F_{1 x}=0 \quad \therefore F_{2 y}=F_{1 y} \\
& F_{2 y}=F_{1 y}=18.6 t \downarrow \\
& F_{2 y}=2 F_{2 x} F_{2 x}=9.3 t \leftarrow \\
& F_{1 y}=2 F_{1 x} F_{1 x}=9.3 t \rightarrow
\end{aligned}
$$

> For Sec. B-B

$$
\sum F_{y}=0 \quad F_{1}=\text { zero }
$$

> For Sec. c-c

$\sum F_{y}=0 \quad F_{1}=18.6 t($ compresion $)$

> For Sec. E-E

$F_{2}=44.8$ (compression)
> For Sec. D-D
$\sum M_{c}=8 x 2+7.2 x 6-F_{1} x 2=0$

$$
F_{2}=29.6(\text { tension })
$$

Example (14)

Find analytically the forces in selected members of given truss in Fig. 5.22.a by the method of section

Fig. 5.22.a

Solution
Finding the reactions

$$
\begin{aligned}
& \sum \mathrm{F}_{\mathrm{x}}=0 \mathrm{X}_{\mathrm{a}}=0 \\
& \sum \mathrm{M}_{\mathrm{a}}=10 \mathrm{x} 6+10 \times 12+10 \mathrm{x} 18+10 \times 24+10 \times 30-36 \mathrm{Y}_{\mathrm{b}}=0 \\
& \quad \therefore \mathrm{Y}_{\mathrm{b}}=25 \mathrm{t} \uparrow \\
& \sum \mathrm{M}_{\mathrm{b}}=10 \mathrm{x} 6+10 \times 12+10 \mathrm{x} 18+10 \times 24+10 \times 30-36 \mathrm{Y}_{\mathrm{a}}=0 \\
& \quad \therefore \mathrm{Y}_{\mathrm{a}}=25 \mathrm{t} \uparrow
\end{aligned}
$$

Check $\sum \mathrm{F}_{\mathrm{y}}=0 \mathrm{ok}$

> For Sec. A-A

$$
\sum F_{y}=0 \quad F_{1}=10 t \text { (tension) }
$$

> For Sec. B-B

$$
\sum M_{c}=25 x 6-F_{1} x 3=0
$$

$$
F_{3}=50 t \rightarrow(\text { tension })
$$

$>$ For Sec. C-C
$\sum M_{c}=10 \times 6-25 \times 12+F_{2} x 6=0$

$F_{2}=40$ (tension)
$\sum M_{0}=25 \times 12-10 \times 6-6 F_{2}=0$

$$
\begin{aligned}
F_{2} & =40(\mathrm{comp}) \\
& >\text { At joint } \mathrm{K}
\end{aligned}
$$

$$
\sum \mathrm{F}_{\mathrm{x}}=0 \quad F_{2 \mathrm{x}}=10 \mathrm{t} \rightarrow
$$

$$
F_{2 \mathrm{x}}=2 F_{2 \mathrm{y}} \quad F_{2 \mathrm{y}}=5 t \rightarrow
$$

$$
\sum \mathrm{F}_{\mathrm{y}}=0 F_{4}=15 \mathrm{t} \uparrow
$$

Fig. 5.21.b

Example (15)

Find analytically the forces in selected members of given truss in Fig. 5.23.a by the method of section

Fig. 5.23.a

$\sum \mathbf{M}_{01}=\mathbf{0 . 0}$
$70 \times 12=\mathrm{F}_{2} \mathrm{X}=6$
$\mathrm{F}_{2} \mathrm{X}=140 \mathrm{t}$ (tension)

$$
\frac{\mathrm{F}_{2 \mathrm{y}}}{\mathrm{~F}_{2 \mathrm{x}}}=\frac{4}{6}=\quad \mathrm{F}_{2} \mathrm{y}=
$$

93.33 t

$$
\mathrm{F}_{2}=168.26 \mathrm{t} \text { (tension) }
$$

$\sum M_{02}=\mathbf{0 . 0}$
$\mathrm{F}_{1 \mathrm{X}}=140 \mathrm{t}$ (compression)
$\sum M_{0}=\mathbf{0 . 0}$
$\mathrm{F}_{1} \mathrm{y} \times 4+\mathrm{F}_{1} \mathrm{x} \times 2-70 \times 8=0.0$
$4 \mathrm{~F}_{1} \mathrm{y}+2 \mathrm{~F}_{1 \mathrm{X}}-70 \times 8=0.0$
$\frac{\mathrm{F}_{1 \mathrm{y}}}{\mathrm{F}_{1 \mathrm{x}}}=\frac{2}{4}=\longrightarrow \quad \mathrm{F}_{1 \mathrm{y}}=0.5$
$\mathrm{F}_{1 \mathrm{X}}$

$2 \mathrm{~F}_{1} \mathrm{X}+2 \mathrm{~F}_{1} \mathrm{y}-70 \times 8=0.0$
$\mathrm{F}_{1 \mathrm{X}}=140 \mathrm{t}$ (tension)
$\mathrm{F}_{1} \mathrm{y}=70 \mathrm{t}$ (tension)
$\mathrm{F}_{1}=156.52 \mathrm{t}$ (tension)
Example (16)
Find graphically the forces in members of given truss in Fig.5.24

Fig.5.24

Example (16)

Find graphically the forces in members of given truss in Fig.5. 24

Fig. 5. 24.a
Solution
Finding the reactions

$$
\begin{aligned}
& \sum \mathrm{F}_{\mathrm{x}}=0 \mathrm{X}_{\mathrm{a}}=4 \leftarrow \\
& \sum \mathrm{M}_{\mathrm{a}}=2 \mathrm{x} 2+2 \mathrm{x} 4+2 \mathrm{x} 6+2 \mathrm{x} 8+4 \mathrm{x} 2-8 \mathrm{Y}_{\mathrm{b}}=0 \quad \therefore \mathrm{Y}_{\mathrm{b}}=6 \mathrm{t} \uparrow
\end{aligned}
$$

$$
\sum \mathrm{M}_{\mathrm{b}}=2 \mathrm{x} 2+2 \mathrm{x} 4+2 \mathrm{x} 6+2 \mathrm{x} 8-4 \mathrm{x} 2-8 \mathrm{Y}_{\mathrm{a}}=0 \quad \therefore \mathrm{Y}_{\mathrm{a}}=4 \mathrm{t} \uparrow
$$

Check $\sum \mathrm{F}_{\mathrm{y}}=0 \mathrm{ok}$

Member	CJ	JA	EK	KJ	KL	LA	LJ	JF	JM
GM									
Force	4	4	8	$2 \sqrt{ } 2$	2	8	0	8	2
Type	C	T	C	T	C	T	$\cdots \cdots$	C	C
Member	MN	NA	NO	OH	OP	PA	PI		
Force	$2 \sqrt{ } 2$	4	4	4	$4 \sqrt{ } 2$	0	6		
Type	T	T	C	C	T	\cdots	C		

Example (17)
Find graphically the forces in members of given truss in Fig. 5.25.

Fig. 5.25
Solution

Finding the reactions

$$
\sum \mathrm{F}_{\mathrm{x}}=0 \mathrm{X}_{\mathrm{a}}=4 \leftarrow
$$

$$
\begin{aligned}
& \sum \mathrm{M}_{\mathrm{a}}=6 \mathrm{x} 4+4.5 \mathrm{x} 8+1.5 \mathrm{x} 10-1.5 \mathrm{x} 2+4 \mathrm{x} 4-8 \mathrm{Y}_{\mathrm{a}}=0 \quad \therefore \mathrm{Y}_{\mathrm{b}}=11 \mathrm{t} \uparrow \\
& \sum \mathrm{M}_{\mathrm{b}}=6 \mathrm{x} 4+4.5 \mathrm{x} 8+1.5 \mathrm{x} 10-1.5 \mathrm{x} 2-4 \mathrm{x} 4-8 \mathrm{Y}_{\mathrm{a}}=0 \quad \therefore \mathrm{Y}_{\mathrm{a}}=7 \mathrm{t} \uparrow
\end{aligned}
$$

$$
\text { Check } \sum \mathrm{F}_{\mathrm{y}}=0 \mathrm{ok}
$$

Member	C1	E1	12	F2	23	34	G4	45	H5	5I	3A
Force	$0.75 \sqrt{ } 5$	3.25	4.5	3.25	$\sqrt{ } 2$	$5 \sqrt{ } 2$	0.75	4.5	0.75	$0.75 \sqrt{5}$	4.25
Type	C	C	C	C	C	C	T	C	T	C	

Example (18)

Find analytically the forces in members of given truss in Fig.5. 26

Fig. 5. 26

Solution

$>$ For the main system

$$
x=-\frac{15}{-1.726}=8.69 t
$$

Total forces

Member	F_{o}	F_{1}	$\mathrm{~F}=\mathrm{F}_{\mathrm{o}}+\mathrm{xF}_{1}$
AB	0	-1.37	-11.9
BC	0	-1.22	-10.614
CD	0	-1.22	-10.614
DE	0	-1.36	-11.83
EF	$-15 \sqrt{ } 2$	1.22	-10.6
EB	0	1	8.69
EA	15	-1.726	0

AF	$-15 \sqrt{ } 2$	1.22	-10.6
AD	0	0.99	8.7
CF	-30	1.72	-15.06

Example (18)

Find analytically the forces in members of given truss in Fig.5.27

Fig.5.27
Solution
$>$ For the main system

To find X1

Joint f

$\mathrm{y} 1+\mathrm{y} 2=1.93$
$\mathrm{x} 1=\mathrm{x} 2$

$\mathrm{F} 1=\mathrm{F} 2$
$\mathrm{y} 1=0.97$ and $\mathrm{y} 2=0.97$
$\mathrm{x} 1=2 \mathrm{y} 1$
$\mathrm{~F} 1=\mathrm{F} 2=2.166$

F 2

Ass. Pr. EItaly, B.

Total forces

Member	F_{o}	F_{1}	$\mathrm{~F}=\mathrm{F}_{0}+\mathrm{x} \mathrm{F}_{1}$
AB	0	-1.21	-24.95
BC	0	-1.37	-28.25
CD	0	-1.37	-28.25
DE	0	-1.22	-25.16
EF	$10 \sqrt{ } 5$	-2.166	-22.3
FC	-20	1.93	19.87
EB	0	1	20.62
EA	-20	0.97	0
AF	$10 \sqrt{5}$	-2.166	-22.30
AD	0	1	20.62

Chapter (6)

INFLUENCE LINE

6.1. Introduction

Structures may be subjected to live loads whose position may vary on the structure as bridge structures. As the car moves across the bridge, the forces in the bridge members change with the position of the car. Also the maximum force in each member will varied at a different car location and the design of each member must be based on the maximum force in its.

Influence Line is defined as the behavior of a structure as a function of the position of a downward unit load moving across the structure. The behavior of the structure includes the reactions, shear force, normal force, bending moment and the torsion. To calculate the influence line follow the below equations:-
a. Consider a unit load to move over the structure from left to right
b. Calculate the values of reactions, shear force or bending moment, at the point under consideration, as the unit load moves over the structure from left to right
c. Plot the values of the reactions, shear force or bending moment, over the length of the beam, computed for the point under consideration

6. Solved examples

Example\#1

Find the influence line for $\mathrm{Y}_{\mathrm{a}}, \mathrm{Y}_{\mathrm{b}}, \mathrm{Q}_{\mathrm{m}-\mathrm{m}}, \mathrm{Q}_{\mathrm{s}-\mathrm{s}}, \mathrm{M}_{\mathrm{s}-\mathrm{s}}$ and $\mathrm{M}_{\mathrm{m}-\mathrm{m}}$ as a result of moving unite loads from left to right on the shown beam in Fig. 6.1.

Fig. 6.1.a
Solution

For I.L (Ya)

When the unite load moves from a to b

- The load at a \rightarrow the reaction Y_{a} will be 1 t upwards
- The load at a distance $1 \mathrm{mfrom} \mathrm{a} \rightarrow$ the reaction Y_{a} will be 0.9 t upwards
- The load at a distance $2 \mathrm{mfrom} \mathrm{a} \rightarrow$ the reaction Y_{a} will be 0.8 t upwards
- The load at a distance 5 m from $\mathrm{a} \rightarrow$ the reaction Y_{a} will be 0.5 t upwards
- The load at a distance 10 m from $\mathrm{a}(\mathrm{at} \mathrm{b}) \rightarrow$ the reaction Y_{a} will be zero

$>$ For I.L $\left(\mathrm{Y}_{\mathrm{b}}\right)$

When the unite load moves from a to b

- The load at a \rightarrow the reaction Y_{b} will be zero
- The load at a distance 1 m from $\mathrm{a} \rightarrow$ the reaction Y_{b} will be 0.1 t upwards
- The load at a distance $2 \mathrm{mfrom} \mathrm{a} \rightarrow$ the reaction Y_{b} will be 0.2 t upwards
- The load at a distance 5 m from $\mathrm{a} \rightarrow$ the reaction Y_{b} will be 0.5 t upwards
- The load at a distance 10 m from $\mathrm{a}($ at b$) \rightarrow$ the reaction Y_{b} will be 1 t upwards

For I.L ($\mathrm{Q}_{\mathrm{s}-\mathrm{s}}$)
When the unite load moves from a to the locations of the sections $\mathrm{Q}_{\mathrm{s}-\mathrm{s}}=$ $\mathrm{Y}_{\mathrm{a}}-1$

- The load at a \rightarrow the shear $\mathrm{Q}_{s-\mathrm{s}}$ will be zero
- The load at a distance 1 m from $\mathrm{a} \rightarrow$ the shear $\mathrm{Q}_{s-s}=0.9-1=0.1 \mathrm{t}$ downwards
- The load at a distance 2 m from $\mathrm{a} \rightarrow$ the shear $\mathrm{Q}_{\mathrm{s}-\mathrm{s}}=0.8-1=0.2 \mathrm{t}$ downwards

When the unite load moves from the locations of the sections to $\mathrm{b}_{\mathrm{Q}-\mathrm{s}}=$ Y_{b}-1a to

- The load at $\mathrm{b} \rightarrow$ the shear $\mathrm{Q}_{s-\mathrm{s}}$ will be zero
- The load at a distance 1 m from $\mathrm{b} \rightarrow$ the shear $\mathrm{Q}_{\mathrm{s}-\mathrm{s}}=0.9-1=0.1 \mathrm{t}$ upwards
- The load at a distance 8 m from $\mathrm{b} \rightarrow$ the shear $\mathrm{Q}_{\mathrm{s}-\mathrm{s}}=0.2-1=0.8 \mathrm{t}$ upwards
$>$ For I.L $\left(\mathrm{Q}_{\mathrm{m}-\mathrm{m}}\right)$
When the unite load moves from a to the locations of the sections $\mathrm{Q}_{\mathrm{m}-\mathrm{m}}$ $=\mathrm{Y}_{\mathrm{a}}-1$
- The load at a \rightarrow the shear $\mathrm{Q}_{\mathrm{m}-\mathrm{m}}$ will be zero
- The load at a distance 1 m from $\mathrm{a} \rightarrow$ the shear $\mathrm{Q}_{\mathrm{m}-\mathrm{m}}=0.9-1=0.1 \mathrm{t}$ downwards
- The load at a distance 5 m from $\mathrm{a} \rightarrow$ the shear $\mathrm{Q}_{\mathrm{m}-\mathrm{m}}=0.5-1=0.5 \mathrm{t}$ downwards

When the unite load moves from the locations of the sections to $\mathrm{b} \mathrm{Q}_{\mathrm{m}-\mathrm{m}}$ $=\mathrm{Y}_{\mathrm{b}}-1 \mathrm{a}$ to

- The load at $\mathrm{b} \rightarrow$ the shear $\mathrm{Q}_{\mathrm{m}-\mathrm{m}}$ will be zero
- The load at a distance 1 m from $\mathrm{b} \rightarrow$ the shear $\mathrm{Q}_{\mathrm{m}-\mathrm{m}}=0.9-1=0.1 \mathrm{t}$ upwards
- The load at a distance 8 m from $\mathrm{b} \rightarrow$ the shear $\mathrm{Q}_{\mathrm{m}-\mathrm{m}}=0.2-1=0.8 \mathrm{t}$ upwards
- The load at a distance 5 m from $\mathrm{a} \rightarrow$ the shear $\mathrm{Q}_{\mathrm{m}-\mathrm{m}}=0.5-1=0.5 \mathrm{t}$ upwards
$>$ For I.L ($\mathrm{M}_{\mathrm{s}-\mathrm{s}}$)
When the unite load moves from a to the locations of the section $\mathrm{M}_{\mathrm{s}-\mathrm{s}}=$ $\mathrm{Y}_{\mathrm{a}}{ }^{*}$ the distance between the section and the support $\mathrm{a}-1 *$ the distance between the location of the moving load and the section
- The load at a \rightarrow the moment $\mathrm{M}_{\mathrm{s}-\mathrm{s}}$ will be zero
- The load at a distance 1 m from $\mathrm{a} \rightarrow$ the moment $\mathrm{M}_{\mathrm{s}-\mathrm{s}}$ $=0.9 \times 1=0.9 \mathrm{mt}$
- The load at a distance 2 m from $\mathrm{a} \rightarrow$ the moment $\mathrm{M}_{\mathrm{s} \text {-s }}$ $=0.2 \times 2=1.6 \mathrm{mt}$

For I.L ($\mathrm{M}_{\mathrm{m}-\mathrm{m}}$)

When the unite load moves from a to the locations of the sections $\mathrm{M}_{\mathrm{s}-\mathrm{s}}=$ $\mathrm{Y}_{\mathrm{a}} *$ the distance between the section and the support $\mathrm{a}-1 *$ the distance between the location of the moving load and the section

- The load at $\mathrm{a} \rightarrow$ the shear $\mathrm{M}_{\mathrm{m}-\mathrm{m}}$ will be zero
- The load at a distance 1 m from $\mathrm{a} \rightarrow$ the moment $\mathrm{M}_{\mathrm{m}-\mathrm{m}}$ $=0.9 \mathrm{x} 1=0.9 \mathrm{mt}$
- The load at a distance 5 m from a \rightarrow the moment $\mathrm{M}_{\mathrm{m}-\mathrm{m}}$ $=0.5 \times 5=2.5 \mathrm{mt}$

I.L $\left(\mathrm{M}_{\mathrm{S}-\mathrm{s}}\right) \mathrm{a}$

Fig.

6.1.b

Example\#2

Find the influence line for $\mathrm{Y}_{\mathrm{a}}, \mathrm{Y}_{\mathrm{b}}, \mathrm{Q}_{\mathrm{m}-\mathrm{m}}, \mathrm{Q}_{\mathrm{s}-\mathrm{s}}, \mathrm{M}_{\mathrm{s}-\mathrm{s}}, \mathrm{M}_{\mathrm{m}-\mathrm{m}}, \mathrm{Q}_{\mathrm{n}-\mathrm{n}}, \mathrm{M}_{\mathrm{n}-\mathrm{n}}, \mathrm{Q}_{\mathrm{t}-\mathrm{t}}$ and $\mathrm{M}_{\mathrm{t}-\mathrm{t}}$ as a result of moving unite loads from left to right on the shown beam in Fig. 6.2.

Fig. 6.2.a

Solution

$>\quad$ For I.L $\left(\mathrm{Y}_{\mathrm{a}}\right)$
When the unite load moves from a to b

- The load at a \rightarrow the reaction Y_{a} will be 1 t upwards
- The load at a distance 8 m from a (at b$) \rightarrow$ the reaction Y_{a} will be zero
- The load at a distance 10 m from a (at the free point) the reaction Y_{a} will be $2 / 8 t=0.25 t$

$>$ For I.L (Y_{b})

When the unite load moves from a to b

- The load at a \rightarrow the reaction Y_{b} will be zero
- The load at a distance 8 m from a (at b) \rightarrow the reaction Y_{b} will be 1t upwards
- The load at a distance 10 m from a (at the free point) the reaction Y_{b} will be $10 / 8 \mathrm{t}=1.25 \mathrm{t}$
$>$ For I.L ($\mathrm{Q}_{\mathrm{s}-\mathrm{s}}$)
When the unite load moves from a to the locations of the sections $\mathrm{Q}_{\mathrm{s}-\mathrm{s}}=$ $\mathrm{Y}_{\mathrm{a}}-1$
- The load at a \rightarrow the shear $\mathrm{Q}_{s-\mathrm{s}}$ will be zero
- The load at a distance 2 m from a (the location of the selected section) \rightarrow the shear $\mathrm{Q}_{s-\mathrm{s}}=0.75-1=0.25$ t downwards

When the unite load moves from the locations of the sections to $\mathrm{b} \mathrm{Q}_{s-\mathrm{s}}=$ Y_{b}-1a to

- The load at a distance 6 m from b (the location of the selected section) \rightarrow the shear $\mathrm{Q}_{s-\mathrm{s}}=0.25-1=0.75$ t upwards
- The load at $\mathrm{b} \rightarrow$ the shear $\mathrm{Q}_{s-\mathrm{s}}$ will be zero
- The load at a distance 10 m from a (the location of the free point)
\rightarrow the shear $\mathrm{Q}_{s-\mathrm{s}}=10 / 8-1=0.25$ t downwards
For I.L ($\mathrm{Q}_{\mathrm{m}-\mathrm{m}}$)
When the unite load moves from a to the locations of the sections $\mathrm{Q}_{\mathrm{m}-\mathrm{m}}$ $=\mathrm{Y}_{\mathrm{a}}-1$
- The load at a \rightarrow the shear $\mathrm{Q}_{\mathrm{m}-\mathrm{m}}$ will be zero
- The load at a distance 4 m from $\mathrm{a} \rightarrow$ the shear $\mathrm{Q}_{\mathrm{m}-\mathrm{m}}=0.5-1=0.5 \mathrm{t}$ downwards

When the unite load moves from the locations of the sections to $b \mathrm{Q}_{\mathrm{m}-\mathrm{m}}$ $=\mathrm{Y}_{\mathrm{b}}-1 \mathrm{a}$ to

- The load at a distance 4 m from $\mathrm{a} \rightarrow$ the shear $\mathrm{Q}_{\mathrm{m}-\mathrm{m}}=0.5-1=0.5 \mathrm{t}$ upwards
- The load at $\mathrm{b} \rightarrow$ the shear $\mathrm{Q}_{\mathrm{m}-\mathrm{m}}$ will be zero
- The load at a distance 10 m from a (the location of the free point)
\rightarrow the shear Qs-s $=10 / 8-1=0.25$ t downwards
$>$ For I.L ($\mathrm{M}_{\mathrm{s}-\mathrm{s}}$)
When the unite load moves from a to the locations of the section $\mathrm{M}_{\text {s-s }}=$ $\mathrm{Y}_{\mathrm{a}}{ }^{*}$ the distance between the section and the support $\mathrm{a}-1 *$ the distance between the location of the moving load and the section
- The load at a \rightarrow the moment $\mathrm{M}_{\text {s-s }}$ will be zero
- The load at a distance 2 m from a (the distance of the section) \rightarrow the moment $\mathrm{M}_{\text {s-s }}=0.75 \times 2=1.5 \mathrm{mt}$
- The load at $\mathrm{b} \rightarrow$ the moment $\mathrm{M}_{\mathrm{s}-\mathrm{s}}$ will be zero
- The load at a distance 10 m from $\mathrm{a} \rightarrow$ the moment $\mathrm{M}_{\text {s-s }}=1 \mathrm{x} 8-$

$$
Y_{b} \times 6=-1 x 8+10 / 8 x 6=-0.5 \mathrm{mt}
$$

$>$ For I.L $\left(\mathrm{M}_{\mathrm{m}-\mathrm{m}}\right)$
When the unite load moves from a to the locations of the sections $\mathrm{M}_{s-\mathrm{s}}=$ $\mathrm{Y}_{\mathrm{a}}{ }^{*}$ the distance between the section and the support a-1*the distance between the location of the moving load and the section

- The load at $\mathrm{a} \rightarrow$ the shear $\mathrm{M}_{\mathrm{m}-\mathrm{m}}$ will be zero
- The load at a distance 4 m from $\mathrm{a} \rightarrow$ the moment $\mathrm{M}_{\mathrm{m}-\mathrm{m}}$ $=0.5 \times 4=2 \mathrm{mt}$
- The load at $\mathrm{b} \rightarrow$ the moment $\mathrm{M}_{\mathrm{m}-\mathrm{m}}$ will be zero
- The load at a distance 610 m from $\mathrm{a} \rightarrow$ the moment $\mathrm{M}_{\mathrm{m}-\mathrm{m}}=-$

$$
1 \times 6+Y_{b} \times 4=-1 \times 6+10 / 8 \times 4=-1 \mathrm{mt}
$$

$>$ For I.L $\left(\mathrm{Q}_{\mathrm{n}-\mathrm{n}}\right)$
When the unite load moves from a to the locations of the sections $\mathrm{Q}_{\mathrm{n}-\mathrm{n}}$ $=Y_{a}-1$

- The load at $\mathrm{a} \rightarrow$ the shear $\mathrm{Q}_{\mathrm{n}-\mathrm{n}}$ will be zero
- The load at a distance 6 m from a \rightarrow the shear $\mathrm{Q}_{\mathrm{m}-\mathrm{m}}=0.25$ $1=0.75$ t downwards

When the unite load moves from the locations of the sections to $b Q_{n-n}$ $=\mathrm{Y}_{\mathrm{b}}-1 \mathrm{a}$ to

- The load at a distance 6 m from $\mathrm{a} \rightarrow$ the shear $\mathrm{Q}_{\mathrm{n}-\mathrm{n}}=0.75-1=0.25 \mathrm{t}$ upwards
- The load at $\mathrm{b} \rightarrow$ the shear $\mathrm{Q}_{\mathrm{n}-\mathrm{n}}$ will be zero
- The load at a distance 10 m from a (the location of the free point) \rightarrow the shear $\mathrm{Qn}-\mathrm{n}=10 / 8-1=0.25 \mathrm{t}$ downwards

$>$ For I.L ($\mathrm{M}_{\mathrm{n}-\mathrm{n}}$)

When the unite load moves from a to the locations of the section $\mathrm{M}_{\mathrm{n}-\mathrm{n}}=$ $\mathrm{Y}_{\mathrm{a}} *$ the distance between the section and the support $\mathrm{a}-1 *$ the distance between the location of the moving load and the section

- The load at a \rightarrow the moment $\mathrm{M}_{\mathrm{n}-\mathrm{n}}$ will be zero
- The load at a distance 6 m from a (the distance of the section) \rightarrow the moment $\mathrm{M}_{\mathrm{s}-\mathrm{s}}=0.25 \times 6=1.5 \mathrm{mt}$
- The load at $\mathrm{b} \rightarrow$ the moment $\mathrm{M}_{s-\mathrm{s}}$ will be zero
- The load at a distance 10 m from $\mathrm{a} \rightarrow$ the moment $\mathrm{M}_{\mathrm{n}-\mathrm{n}}=1 \mathrm{x} 4-$

$$
Y_{b} \times 2=-1 \times 4+10 / 8 \times 2=-1.5 \mathrm{mt}
$$

For I.L ($\mathrm{Q}_{\mathrm{t}-\mathrm{t}}$)

- When the unite load moves from a to the locations of the section $\mathrm{Q}_{\mathrm{t}-\mathrm{t}}=0$

When the unite load moves from the locations of the sections to the free point $\mathrm{Q}_{\mathrm{t}-\mathrm{t}}=1 \mathrm{t}$ upwards

For I.L ($\mathrm{M}_{\mathrm{t}-\mathrm{t}}$)

- When the unite load moves from a to the locations of the section
$\mathrm{M}_{\mathrm{t}-\mathrm{t}}=0$
- The load at a distance 10 m from the moment $\mathrm{M}_{\mathrm{t}-\mathrm{t}}=-2 \mathrm{mt}$

Fig. 6.2.b

Fig. 6.2.c

Fig. 6.2.d

Example\#3

Find the influence line for $\mathrm{Y}_{\mathrm{a}}, \mathrm{Y}_{\mathrm{b}}, \mathrm{Q}_{\mathrm{m}-\mathrm{m}}, \mathrm{Q}_{\mathrm{s}-\mathrm{s}}, \mathrm{M}_{\mathrm{s}-\mathrm{s}}, \mathrm{M}_{\mathrm{m}-\mathrm{m}}, \mathrm{Q}_{\mathrm{n}-\mathrm{n}}$ and $\mathrm{M}_{\mathrm{n}-\mathrm{n}}$ as a result of moving unite loads from left to right on the shown beam in Fig. 6.3.

Fig. 6. 3.a

Solution

$>\quad$ For I.L (Y_{a})

When the unite load moves from a to b

- The load at a \rightarrow the reaction Y_{a} will be 1t upwards
- The load at a distance 6 m from a (at b$) \rightarrow$ the reaction Y_{a} will be zero
- The load at a distance 8 m from a (at the right free point) the reaction Y_{a} will be 2/6t downward
- The load at a distance 1 m from a (at the left free point) the reaction Y_{a} will be 7/6t upward

$>$ For I.L $\left(\mathrm{Y}_{\mathrm{b}}\right)$

When the unite load moves from a to b

- The load at a \rightarrow the reaction Y_{b} will be zero
- The load at a distance 6 m from a (at b$) \rightarrow$ the reaction Y_{b} will be 1t upwards
- The load at a distance 8 m from a (at the right free point) the reaction Y_{b} will be $8 / 6 \mathrm{t}=4 / 3 \mathrm{t}$ upwards
$>$ For I.L ($\mathrm{Q}_{\mathrm{s}-\mathrm{s}}$)
When the unite load moves from a to the locations of the sections $\mathrm{Q}_{\mathrm{s}-\mathrm{s}}=$ $\mathrm{Y}_{\mathrm{a}}-1$
- The load at a \rightarrow the shear $\mathrm{Q}_{s-\mathrm{s}}$ will be zero
- The load at a distance 2 m from a (the location of the selected section) \rightarrow the shear $\mathrm{Q}_{s-s}=2 / 3-1=1 / 3$ t downwards
- The load at the location of the left free point the shear $\rightarrow \mathrm{Q}_{\mathrm{s}-\mathrm{s}}$ $=7 / 6-1=1 / 6$ t downwards

When the unite load moves from the locations of the sections to $\mathrm{b}_{\mathrm{s}-\mathrm{s}}=$ $\mathrm{Y}_{\mathrm{b}}-1 \mathrm{a}$ to

- The load at a distance 4 m from b (the location of the selected section) \rightarrow the shear $\mathrm{Q}_{\mathrm{s}-\mathrm{s}}=1 / 3-1=2 / 3 \mathrm{t}$ upwards
- The load at $\mathrm{b} \rightarrow$ the shear $\mathrm{Q}_{\mathrm{s}-\mathrm{s} \text { will }}$ be zero
- The load at a distance 8 m from a (the location of the right free \rightarrow point) the shear $\mathrm{Q}_{s-\mathrm{s}}=8 / 6-1=1 / 3$ t downwards
$>$ For I.L $\left(\mathrm{Q}_{\mathrm{m}-\mathrm{m}}\right)$
When the unite load moves from a to the locations of the sections $\mathrm{Q}_{\mathrm{m}-\mathrm{m}}$ $=Y_{a}-1$
- The load at a \rightarrow the shear $\mathrm{Q}_{\mathrm{m}-\mathrm{m}}$ will be zero
- The load at a distance 4 m from $\mathrm{a} \rightarrow$ the shear $\mathrm{Q}_{\mathrm{m}-\mathrm{m}}=0-1=1 \mathrm{t}$ downwards

When the unite load moves from the locations of the sections to the free point $\mathrm{Q}_{\mathrm{m}-\mathrm{m}}=\mathrm{Y}_{\mathrm{b}}-1 \mathrm{a}$ to

- The load at a distance 6 m from $\mathrm{a} \rightarrow$ the shear $\mathrm{Q}_{\mathrm{m}-\mathrm{m}}=1-1=0$ upwards
- The load at a distance 8 m from a (the location of the right free point) \rightarrow the shear Qs-s $=8 / 6-1=1 / 3$ t downwards
$>$ For I.L ($\mathrm{M}_{\mathrm{s}-\mathrm{s}}$)
When the unite load moves from the left free point to the locations of the section $\mathrm{M}_{\mathrm{s}-\mathrm{s}}=\mathrm{Y}_{\mathrm{a}}{ }^{*}$ the distance between the section and the support a1^{*} the distance between the location of the moving load and the section
- The load at a \rightarrow the moment $\mathrm{M}_{\text {s-s }}$ will be zero
- The load at a distance 2 m from a (the distance of the section) \rightarrow the moment $\mathrm{M}_{\mathrm{s}-\mathrm{s}}=2 / 3 \times 2=4 / 3 \mathrm{mt}$
- The load at the free left point \rightarrow the moment $\mathrm{M}_{\text {s-s }}=7 / 6 \times 2-$ $1 \times 3=2 / 3 \mathrm{mt}$

When the unite load moves from the left free point to the locations of the section $\mathrm{M}_{\mathrm{s}-\mathrm{s}}=\mathrm{Y}_{\mathrm{a}}{ }^{*}$ the distance between the section and the support a1 *the distance between the location of the moving load and the section

- The load at $\mathrm{b} \rightarrow$ the moment $\mathrm{M}_{\mathrm{s}-\mathrm{s}}$ will be zero
- The load at a distance 6 m from a (at the right free point) \rightarrow the moment $\mathrm{M}_{s-s}=-1 \mathrm{x} 6+\mathrm{Y}_{\mathrm{bx}} 4=-1 \times 6+8 / 6 \mathrm{x} 4=-2 / 3 \mathrm{mt}$

$>$ For I.L ($\mathrm{Q}_{\mathrm{n}-\mathrm{n}}$)

When the unite load moves from the locations of the sections to the left free point $\mathrm{Q}_{\mathrm{t}-\mathrm{t}}=1 \mathrm{t}$ downwards

$>$ For I.L $\left(\mathrm{M}_{\mathrm{t}-\mathrm{t}}\right)$

When the unite load moves from the left free point to the locations of the section $\mathrm{M}_{\mathrm{n}-\mathrm{n}}=1$ xthe distance

- The load at the free point \rightarrow the moment $\mathrm{M}_{\mathrm{n}-\mathrm{n}}=-1 \mathrm{x} 1=-1 \mathrm{mt}$
- The load at the location of the section $\mathrm{M}_{\mathrm{n}-\mathrm{n}}=0$

Fig. 6. 3.b

Fig.6. 3.c

Example\#4

Find the influence line for $\mathrm{Y}_{\mathrm{a}}, \mathrm{Y}_{\mathrm{b}}, \mathrm{Q}_{\mathrm{m}-\mathrm{m}}, \mathrm{Q}_{\mathrm{s}-\mathrm{s}}, \mathrm{M}_{\mathrm{s}-\mathrm{s}}, \mathrm{M}_{\mathrm{m}-\mathrm{m}}, \mathrm{Q}_{\mathrm{n}-\mathrm{n}}$ and $\mathrm{M}_{\mathrm{n}-\mathrm{n}}$ as a result of moving unite loads from left to right on the shown beam in Fig. 6.4.

Fig. 6.4.a

Solution
$>$ For I.L Ya
Unite load at a $\mathrm{Y}_{\mathrm{a}}=1 \mathrm{t}$
Unite load at $b \mathrm{Y}_{\mathrm{a}}=0$
Unite load at the intermediate hinge $\mathrm{Y}_{\mathrm{a}}=-2 / 9 \mathrm{t} \quad$ Unite load at $\mathrm{c} \mathrm{Y}_{\mathrm{a}}=0$
> For I.L Y_{b}
Unite load at a $\mathrm{Y}_{\mathrm{b}}=0$
Unite load at $b \mathrm{Y}_{\mathrm{b}}=1$

Unite load at the intermediate hinge $\mathrm{Y}_{\mathrm{b}}=11 / 9 \mathrm{t}$ Unite load at $\mathrm{c} \mathrm{Y}_{\mathrm{a}}=0$
$>$ For I.L Yc
Unite load at a $\mathrm{Y}_{\mathrm{c}}=0$
Unite load at $\mathrm{b} \mathrm{Y}_{\mathrm{c}}=0$

Unite load at the intermediate hinge $\mathrm{Y}_{\mathrm{c}}=0$ Unite load at $\mathrm{c} \mathrm{Y}_{\mathrm{c}}=1 \mathrm{t}$
$>$ For I.L Q_{s-s}
Unite load at a $\mathrm{Q}_{\mathrm{s}-\mathrm{s}}=0 \quad$ Unite load at $\mathrm{s}-\mathrm{s}$ left $\mathrm{Q}_{\mathrm{s}-\mathrm{s}}=2 / 3-1=-1 / 3 \mathrm{t}$
Unite load at s-s right $\mathrm{Q}_{s-\mathrm{s}}=1-1 / 3=2 / 3 \mathrm{t}$

Unite load at the intermediate hinge $\mathrm{Q}_{\mathrm{s}-\mathrm{s}}=1-11 / 9=-2 / 3 \mathrm{t}$
Unite load at c $\mathrm{Q}_{\mathrm{s}-\mathrm{s}}=0$
$>$ For I.L M_{s-s}
Unite load at a $\mathrm{M}_{\mathrm{s}-\mathrm{s}}=0 \quad$ Unite load at $\mathrm{s}-\mathrm{s} \mathrm{M}_{\mathrm{s}-\mathrm{s}}=2 / 3 \times 3=2 \mathrm{mt}$
Unite load at the intermediate hinge $M_{s-s}=-1 \times 8+11 / 9 \times 6=-2 / 3 \mathrm{t}$
Unite load at c $\mathrm{M}_{\mathrm{s}-\mathrm{s}}=0$
$>$ For I.L Q_{m-m}
Unite load at a $\mathrm{Q}_{\mathrm{m}-\mathrm{m}}=0 \quad$ Unite load at the intermediate hinge $\mathrm{Q}_{\mathrm{m}-\mathrm{m}}=0$ Unite load at $\mathrm{m}-\mathrm{m}$ left $\mathrm{Q}_{\mathrm{m}-\mathrm{m}}=0.5-1=-0.5 \mathrm{t}$

Unite load at $\mathrm{m}-\mathrm{m}$ right $\mathrm{Q}_{\mathrm{m}-\mathrm{m}}=1-0.5=0.5 \mathrm{t} \quad$ Unite load at $\mathrm{c} \mathrm{Q}_{\mathrm{m}-\mathrm{m}}=0$
$>$ For I.L M_{m-m}
When the unite load moves from a to the intermediate hinge the moment at m-m equal zero (the section in secondary element)

Unite load at $\mathrm{m}-\mathrm{m} \quad \mathrm{M}_{\mathrm{m}-\mathrm{m}}=-0.5 \mathrm{x} 3=1.5 \mathrm{mt} \quad$ Unite load at $\mathrm{c} \mathrm{M}_{\mathrm{m}-\mathrm{m}}=0$
$>$ For I.L Q_{n-n}
When the unite load moves from a to the location of the section, the shear at n-n equal zero (the section in secondary element)

Unite load at $n-n$ left $\mathrm{Q}_{\mathrm{n}-\mathrm{n}}=0 \quad$ Unite load at $\mathrm{n}-\mathrm{n}$ right $\mathrm{Q}_{\mathrm{n}-\mathrm{n}}=1 \mathrm{t}$
Unite load at the intermediate hinge $\mathrm{Q}_{\mathrm{n}-\mathrm{n}}=1 \mathrm{t}$ Unite load at $\mathrm{c} \mathrm{Q}_{\mathrm{n}-\mathrm{n}}=0$
$>$ For I.L M_{n-n}
When the unite load moves from a to the location of the section, the moment at n - n equal zero (the section in secondary element)

Unite load at $\mathrm{n}-\mathrm{n} \mathrm{M}_{\mathrm{m}-\mathrm{m}=0}$ Unite load at the intermediate hinge $\mathrm{Q}_{\mathrm{n}-\mathrm{n}}=-$ $1 \times 2=-2 \mathrm{mt} \quad$ Unite load at $\mathrm{c} \mathrm{M}_{\mathrm{n}-\mathrm{n}}=0$

Fig. 6.4.b

Fig. 6.4.c

Fig. 6.4.d

Example\#5

Find the influence line for $\mathrm{Y}_{\mathrm{a}}, \mathrm{Y}_{\mathrm{b}}, \mathrm{Q}_{\mathrm{m}-\mathrm{m}}, \mathrm{Q}_{\mathrm{s}-\mathrm{s}}, \mathrm{M}_{\mathrm{s}-\mathrm{s}}, \mathrm{M}_{\mathrm{m}-\mathrm{m}}$, and $\mathrm{Q}_{\mathrm{m}-\mathrm{m}}$ as a result of moving unite loads from left to right on the shown beam in Fig. 6.5.

Fig. 6.5.a

Solution
> For I.L Y_{a}
Unite load at a $\mathrm{Y}_{\mathrm{a}}=1 \mathrm{t}$
Unite load at $\mathrm{b} \mathrm{Y}_{\mathrm{a}}=0$

Unite load at the intermediate hinge $\mathrm{Y}_{\mathrm{a}}=1$
$>$ For I.L Ma
Unite load at a $M_{a}=1$ t Unite load at the intermediate hinge $M_{a}=-4 m t$
Unite load at b $\mathrm{M}_{\mathrm{a}}=0$
$>$ For I.L Y_{b}
When the unite load moves from a to the intermediate hinge the response at part c-b equal zero (the secondary element) Unite load at $\mathrm{c} \mathrm{Y}_{\mathrm{a}}=0$
$>$ For I.L Q_{s-s}
Unite load at a $\mathrm{Q}_{s-s}=0 \quad$ Unite load at $\mathrm{s}-\mathrm{s}$ left $\mathrm{Q}_{\mathrm{s}-\mathrm{s}}=0$
Unite load at s-s right $\mathrm{Q}_{\mathrm{s}-\mathrm{s}}=1 \mathrm{t}$
Unite load at the intermediate hinge $\mathrm{Q}_{\mathrm{s}-\mathrm{s}}=1 \mathrm{t} \quad$ Unite load at $\mathrm{c} \mathrm{Q}_{s-\mathrm{s}}=0$
$>$ For I.L M_{s-s}
Unite load at a $\mathrm{M}_{\mathrm{s}-\mathrm{s}}=0 \quad$ Unite load at $\mathrm{s}-\mathrm{s} \mathrm{M}_{\mathrm{s}-\mathrm{s}}=0$
Unite load at the intermediate hinge $\mathrm{M}_{\mathrm{s}-\mathrm{s}}=-1 \mathrm{x} 1=-1 \mathrm{mt}$
Unite load at c $\mathrm{M}_{\mathrm{s}-\mathrm{s}}=0$
$>$ For I.L Q_{m-m}

Unite load at the intermediate hinge $\mathrm{Q}_{\mathrm{m}-\mathrm{m}}=0$
Unite load at $\mathrm{m}-\mathrm{m}$ left $\mathrm{Q}_{\mathrm{m}-\mathrm{m}}=2 / 3-1=-1 / 3 \mathrm{t}$
Unite load at $\mathrm{m}-\mathrm{m}$ right $\mathrm{Q}_{\mathrm{m}-\mathrm{m}}=1-1 / 3=2 / 3 \mathrm{t}$ Unite load at $\mathrm{c} \mathrm{Q}_{\mathrm{m}-\mathrm{m}}=0$
$>$ For I.L M_{m-m}
Unite load at $\mathrm{m}-\mathrm{m} \mathrm{M}_{\mathrm{m}-\mathrm{m}}=2 / 3 \mathrm{x} 2=4 / 3 \mathrm{mt} \quad$ Unite load at $\mathrm{c} \mathrm{M}_{\mathrm{m}-\mathrm{m}}=0$

Fig. 6.5.b

Example\#6

Find the influence line for $\mathrm{Y}_{\mathrm{a}}, \mathrm{Y}_{\mathrm{b}}, \mathrm{Q}_{\mathrm{m}-\mathrm{m}}, \mathrm{Q}_{\mathrm{s}-\mathrm{s}}, \mathrm{M}_{\mathrm{s}-\mathrm{s}}, \mathrm{M}_{\mathrm{m}-\mathrm{m}}, \mathrm{Q}_{\mathrm{n}-\mathrm{n}}$ and $\mathrm{M}_{\mathrm{n}-\mathrm{n}}$ as a result of moving unite loads from left to right on the shown beam in Fig. 6.6.

Fig.

6.6.a

Solution
\Rightarrow For I.L Y_{a}
Unite load at a $\mathrm{Y}_{\mathrm{a}}=1 \mathrm{t}$
Unite load at $\mathrm{b} \mathrm{Y}_{\mathrm{a}}=0$
Unite load at the intermediate hinge \#1 $Y_{a}=-2 / 6 t$
Unite load at the intermediate hinge \#2 $\mathrm{Y}_{\mathrm{a}}=0 \quad$ Unite load at $\mathrm{c} \mathrm{Y}_{\mathrm{a}}=0$
> For I.L Y_{b}
Unite load at a $\mathrm{Y}_{\mathrm{b}}=0 \quad$ Unite load at $\mathrm{b} \mathrm{Y}_{\mathrm{b}}=1$
Unite load at the intermediate hinge\# $1 Y_{b}=8 / 6 t$
Unite load at the intermediate hinge $\# 2 \mathrm{Y}_{\mathrm{b}}=0 \quad$ Unite load at $\mathrm{c} \mathrm{Y}_{\mathrm{b}}=0$
$>$ For I.L Yc
When the unite load moves from a to the intermediate hinge\#1, the responses in part 2-c are zero

Unite load at the intermediate hinge\# $1 \mathrm{Y}_{\mathrm{c}}=0$
Unite load at the intermediate hinge\#2 $\mathrm{Y}_{\mathrm{c}}=1$

Unite load at $\mathrm{c} \mathrm{Y}_{\mathrm{c}}=1$
$>$ For I.L Mc
Unite load at the intermediate hinge\# $1 \mathrm{M}_{\mathrm{c}}=0$
Unite load at the intermediate hinge\# $2 \mathrm{M}_{\mathrm{c}}=-1 \mathrm{x} 2=-2 \mathrm{mt}$
Unite load at c $\mathrm{M}_{\mathrm{c}}=0$
$>$ For I.L Q_{s-s}
Unite load at a $\mathrm{Q}_{\mathrm{s}-\mathrm{s}}=0 \quad$ Unite load at s-s left $\mathrm{Q}_{\mathrm{s}-\mathrm{s}}=2 / 3-1=-1 / 3 \mathrm{t}$
Unite load at $\mathrm{s}-\mathrm{s}$ right $\mathrm{Q}_{\mathrm{s}-\mathrm{s}}=1-1 / 3=2 / 3 \mathrm{t}$
Unite load at the intermediate hinge\#1 $\mathrm{Q}_{\mathrm{s}-\mathrm{s}}=1-8 / 6=-2 / 6 \mathrm{t}$
Unite load at the intermediate hinge\#2 $\mathrm{Q}_{\mathrm{s}-\mathrm{s}}=0$
$>$ For I.L M_{s-s}
Unite load at a $\mathrm{M}_{\mathrm{s}-\mathrm{s}}=0 \quad$ Unite load at s-s $\mathrm{M}_{\mathrm{s}-\mathrm{s}}=2 / 3 \times 2=4 / 3 \mathrm{mt}$
Unite load at the intermediate hinge\#1 $\mathrm{M}_{\mathrm{s}-\mathrm{s}}=-1 \mathrm{x} 6+8 / 6 \mathrm{x} 4=-2 / 3 \mathrm{t}$
Unite load at $\mathrm{c} \mathrm{M}_{\mathrm{s}-\mathrm{s}}=0$
$>$ For I.L Q_{m-m}
When the unite load moves from a to the location of sec. $\mathrm{m}-\mathrm{m}$ the second intermediate hinge, the responses at the section are zero

Unite load at $\mathrm{m}-\mathrm{m}$ left $\mathrm{Q}_{\mathrm{m}-\mathrm{m}}=0 \quad$ Unite load at $\mathrm{m}-\mathrm{m}$ right $\mathrm{Q}_{\mathrm{m}-\mathrm{m}}=1 \mathrm{t}$

Unite load at the intermediate hinge\#1 $\mathrm{Q}_{\mathrm{m}-\mathrm{m}=1}$
Unite load at the intermediate hinge $\# 2 \mathrm{Q}_{\mathrm{m}-\mathrm{m}}=0$
$>$ For I.L M_{m-m}
Unite load at $\mathrm{m}-\mathrm{m} \quad \mathrm{M}_{\mathrm{m}-\mathrm{m}}=0$
Unite load at the intermediate hinge\#1 $\mathrm{M}_{\mathrm{m}-\mathrm{m}}=-1 \mathrm{x} 2=-2 \mathrm{mt}$
Unite load at the intermediate hinge\# $2 \mathrm{M}_{\mathrm{m}-\mathrm{m}}=0$

For I.L Q_{n-n}
When the unite load moves from a to the first intermediate hinge and the second intermediate hinge, the response at n - n equal zero (the section in secondary element)

Unite load at $\mathrm{n}-\mathrm{n}$ left $\mathrm{Q}_{\mathrm{n}-\mathrm{n}}=-0.5 \mathrm{t} \quad$ Unite load at $\mathrm{n}-\mathrm{n}$ right $\mathrm{Q}_{\mathrm{n}-\mathrm{n}}=0.5 \mathrm{t}$
$>$ For I.L M_{n-n}
Unite load at $\mathrm{n}-\mathrm{n} \mathrm{M}_{\mathrm{m}-\mathrm{m}}=0.5 \mathrm{x} 2=1 \mathrm{mt}$

Fig. 6.6.b

Fig. 6.6.c

Example\#7

Find the influence line for $\mathrm{Y}_{\mathrm{a}}, \mathrm{Y}_{\mathrm{b}}, \mathrm{Q}_{\mathrm{s}-\mathrm{s}}$ and $\mathrm{M}_{\mathrm{s}-\mathrm{s}}$ as a result of moving unite loads from left to right on the shown beam in Fig. 6.7.

Fig. 6.7.a

Solution
$>$ For I.L Y_{a}

Unite load at a $\mathrm{Y}_{\mathrm{a}}=1 \mathrm{t}$
$>$ For I.L Y_{b}
Unite load at a $\mathrm{Y}_{\mathrm{b}}=0$
Unite load at $b \mathrm{Y}_{\mathrm{b}}=1$
$>$ For I.L Q_{s-s}
Unite load at a $\mathrm{Q}_{\mathrm{s}-\mathrm{s}}=0$ Unite load at s-s left $\mathrm{Q}_{\mathrm{s}-\mathrm{s}}=3 / 12-1=-3 / 4 \mathrm{t}$ (upwards)
Unite load at $\mathrm{s}-\mathrm{s}$ right $\mathrm{Q}_{\mathrm{s}-\mathrm{s}}=9 / 12-1=1 / 4 \mathrm{t}$ (downward)
$>$ For I.L M_{s-s}
Unite load at a $\mathrm{M}_{\mathrm{s}-\mathrm{s}}=0 \quad$ Unite load at $\mathrm{s}-\mathrm{s} \mathrm{M}_{\mathrm{s}-\mathrm{s}}=3 / 12 \mathrm{x} 9=2.25 \mathrm{mt}$

Fig. 6.7.b

Example\#8

Find the influence line for $\mathrm{Y}_{\mathrm{a}}, \mathrm{Y}_{\mathrm{b}}, \mathrm{Q}_{\mathrm{m}-\mathrm{m}}, \mathrm{Q}_{\mathrm{s}-\mathrm{s}}, \mathrm{M}_{\mathrm{s}-\mathrm{s}}, \mathrm{M}_{\mathrm{m}-\mathrm{m}}, \mathrm{Q}_{\mathrm{n}-\mathrm{n}}$ and $\mathrm{M}_{\mathrm{n}-\mathrm{n}}$ as a result of moving unite loads from left to right on the shown beam in Fig. 6.8.

Fig. 6.8.a
$>$ For I.L Y_{a}

When the unite load moves from the intermediat hinge to the end of the frame, the responses in part a-1 (secondary) are zero

Unite load at a $\mathrm{Y}_{\mathrm{a}}=1 \mathrm{t}$
$>$ For I.L Yb
Unite load at a $\mathrm{Y}_{\mathrm{b}}=0 \quad$ Unite load at column c $\mathrm{Y}_{\mathrm{b}}=0$
Unite load at column b $\mathrm{Y}_{\mathrm{b}}=1 \mathrm{t}$
Unite load at the intermediate hinge $\mathrm{Y}_{\mathrm{b}}=1.2 \mathrm{t}$
$>$ For I.L Y_{c}

Unite load at a $\mathrm{Y}_{\mathrm{c}}=0 \quad$ Unite load at column $\mathrm{c} \mathrm{Y}_{\mathrm{c}}=1 \mathrm{t}$

Unite load at column $b \mathrm{Y}_{\mathrm{c}}=0$ Unite load at the intermediate hinge $\mathrm{Y}_{\mathrm{c}}=-0.2 \mathrm{t}$
$>$ For I.L Q_{s-s}
Unite load at a $\mathrm{Q}_{\mathrm{s}-\mathrm{s}=0} \quad$ Unite load at $\mathrm{s}-\mathrm{s}$ left $\mathrm{Q}_{\mathrm{s}-\mathrm{s}}=3 / 5-1=-2 / 5 \mathrm{t}$
Unite load at s-s right $\mathrm{Q}_{\mathrm{s}-\mathrm{s}}=1-2 / 5=3 / 5 \mathrm{t}$

Unite load at the intermediate hinge $\mathrm{Q}_{\mathrm{s}-\mathrm{s}}=0$
$>$ For I.L M_{s-s}
Unite load at a $M_{s-s}=0 \quad$ Unite load at s-s $M_{s-s}=3 / 5 \times 3=6 / 5 \mathrm{mt}$
Unite load at the intermediate hinge\#1 $\mathrm{M}_{\mathrm{s}-\mathrm{s}}=0$
$>$ For I.L Q_{m-m}

When the unite load moves from the location of sec. m-m to column c, the responses at the section are zero

Unite load at $\mathrm{m}-\mathrm{m}$ right $\mathrm{Q}_{\mathrm{m}-\mathrm{m}}=0 \quad$ Unite load at $\mathrm{m}-\mathrm{m}$ left $\mathrm{Q}_{\mathrm{m}-\mathrm{m}}=-1 \mathrm{t}$
Unite load at a $\mathrm{M}_{\mathrm{m}-\mathrm{m}}=0$
$>$ For I.L M_{m-m}
Unite load at $\mathrm{m}-\mathrm{m} \quad \mathrm{M}_{\mathrm{m}-\mathrm{m}}=0$
Unite load at the intermediate hinge $1 \mathrm{M}_{\mathrm{m}-\mathrm{m}}=-1 \mathrm{x} 2=-2 \mathrm{mt}$
Unite load at a $\mathrm{M}_{\mathrm{m}-\mathrm{m}}=0$
$>$ For I.L Q_{n-n}
Unite load at a $\mathrm{Q}_{\mathrm{n}-\mathrm{n}}=0$
Unite load at the intermediate hinge $\mathrm{M}_{\mathrm{n}-\mathrm{n}}=0.2$
Unite load at column b $\mathrm{Q}_{\mathrm{n}-\mathrm{n}}=0$
Unite load at $\mathrm{n}-\mathrm{n}$ left $\mathrm{Q}_{\mathrm{n}-\mathrm{n}}=0.6-1=-0.4 \mathrm{t}$
Unite load at $\mathrm{n}-\mathrm{n}$ right $\mathrm{Q}_{\mathrm{n}-\mathrm{n}}=1-0.4=0.6 \mathrm{t}$ Unite load at column $\mathrm{c} \mathrm{Q}_{\mathrm{n}-\mathrm{n}}=0$
$>$ For I.L M_{n-n}

Unite load at a $\mathrm{M}_{\mathrm{n}-\mathrm{n}}=0$
Unite load at the intermediate hinge $\mathrm{M}_{\mathrm{n}-\mathrm{n}}=-1 \times 6+1.2 \times 4=-1.2 \mathrm{mt}$
Unite load at column b $\mathrm{M}_{\mathrm{n}-\mathrm{n}}=0$
Unite load at $\mathrm{n}-\mathrm{n} \mathrm{M}_{\mathrm{n}-\mathrm{n}}=0.6 \mathrm{x} 4=2.4 \mathrm{mt} \quad$ Unite load at column $\mathrm{c} \mathrm{Q}_{\mathrm{n}-\mathrm{n}}=0$

Fig. 6.8.b

Fig. 6.8.c

Example\#9

Find the influence line for $\mathrm{Y}_{\mathrm{a}}, \mathrm{Y}_{\mathrm{b}}, \mathrm{Q}_{\mathrm{m}-\mathrm{m}}, \mathrm{Q}_{\mathrm{s}-\mathrm{s}}, \mathrm{M}_{\mathrm{s}-\mathrm{s}}, \mathrm{M}_{\mathrm{m}-\mathrm{m}}, \mathrm{Q}_{\mathrm{n}-\mathrm{n}}$ and $\mathrm{M}_{\mathrm{n}-\mathrm{n}}$ as a result of moving unite loads from left to right on the shown beam in Fig. 6.9.

Fig. 6.9

Sheet 1

State whether the structures shown in the following figures are stable or unstable and statically determinate or statically indeterminate.

2

4

9

Sheet (2)

For the given beams and frames, find the reactions at supports.

(1)

(2)

(3)

(4)

Sheet\#3
[1]For the below beams, draw normal, shear forces and bending moment diagrams

(1)

(2)

(3)

(4)

(5)

(6)

$\rightarrow 1.5|-3 \rightarrow|-1-|-1 \rightarrow-|-2 \rightarrow|-1 \rightarrow-1-|$
(6)

$$
|-6 \longrightarrow 1-1-1.5 \rightarrow 1.5 \rightarrow|
$$

(7)

(8)

2] For the given bending moment diagram, find the applied load then draw the shear force diagram

Sheet\#4

For the below beams, draw normal, shear forces and bending moment diagrams

